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Abstract

In this report we study and try to minimize the total execution time of a Profile
Matching protocol, a secure computations protocol based on an operation called
conditional gate. We focus on reducing the complexities and study the inter-
play between them, mainly the round, communication, computational, space
and random complexities. We propose several optimizations and study their ef-
fect, both the theoretical limits and their effect on a real world implementation.
The involved protocols were implemented in an application that performed an
Approximate matcher protocol. In addition to this report, parts of this project
are also the “Profile Matcher” application and the “Profile Matcher API Refer-
ence Manual”.

What we show in this report is that the expected high round complexity can be
reduced for this protocol and give ways to utilize the idle time caused by the need
for interaction. Furthermore we show that the effects of scheduling of operations
with high round complexity can be impressive compared to a straightforward
implementation.

This project was carried out within Philips Research, Eindhoven.
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Chapter 1

Introduction

1.1 Profile Matching

Given the large amount of personal information stored today’s databases and
the need for privacy protection, it is important for the owners of such databases
to prevent abuse of the contents. Two ways to protect this information is by
use of strict access control, or by active protection in a way that information
is used but not given away. Profile matching is a protocol of the latter kind.
Data, such as biometrics, fingerprints, etc., can be compared against other values
without revealing any of them to the parties performing the computations. This
protocol would also allow scenarios of authentication where the one performing
the authentication has no access to the actual data being verified, thus ensuring
the security of the stored data.

The profile matching protocol we base our study on is described in [32]. What
the protocol does is, given a set of parties, allows them to compare the Ham-
ming distance1 of two encrypted binary strings against a given threshold. Dur-
ing the protocol execution no-one learns anything about the two encrypted
binary strings, except for the output of the comparison. The protocol is based
on algorithms for secure computations and relies on a homomorphic threshold
cryptosystem, such as the homomorphic El-Gamal system. It is called Secure
Approximate Matcher, but from now on we refer on it simply as Approximate
matcher .

1.2 Goals of this study

An important question [40] for secure multi-party computations protocols, is
whether they are efficient enough to be used in practical applications, i.e., run
in acceptable time, exchange a reasonable amount of data, rounds of interaction
are realistic, scale well with the size of the input, etc. In this study we try to

1The Hamming distance of two bitstrings gives the number of positions for which the
strings are different.
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4 CHAPTER 1. INTRODUCTION

give an initial answer to this question for the Approximate matcher protocol
from [32] without getting restricted in specific system requirements. Our main
target is to minimize the total time of execution of the protocol as far as possible
with the given algorithms and provide an efficient implementation of it.

For the proposed optimizations we focused on the interplay between complexity
measures such as

• round complexity;

• communication complexity;

• computational complexity;

• randomness complexity;

• space complexity.

1.3 Roadmap

The organization of this document is as follows. In the next chapter we discuss
the protocols used by the Approximate matcher and give brief descriptions and
complexities. Those are the building blocks in order to understand the protocol.
In the description of these algorithms the knowledge of algebra is assumed. The
Approximate matcher protocol is explained in chapter 3. The next two chapters
discuss optimizations on the described protocols. Generic optimizations that
could apply to other protocols except for the Profile matching are given in
chapter 4. Specific optimizations for the Approximate matcher are discussed
in chapter 5. Implementation requirements and architecture of the developed
software are discussed in chapter 6. Chapter 7 summarizes important issues that
were considered throughout the implementation and design phase. Chapter 8
discusses the results obtained by the implementation and Chapter 9 gives a
summary of the results of this report.



Chapter 2

Building blocks

2.1 Definitions and terminology

In order for all discussed topics to be clear to the reader, we quote here the def-
initions of important aspects used throughout this document. All the acronyms
used in this document are included in Appendix A.

When one of the following terms are used to describe complexities in multi-party
computations, we limit their scope to each party and not as a total.

Communication complexity We quote the definition from [19, p. 84] .

The cost of a protocol is the number of bits written on the board1 for
the worst case input. The multiparty (deterministic) communication
complexity of f, D(f), is the minimal cost of a protocol that computes
f.

Space complexity We will use the apparent meaning for space complexity.
That is

Space complexity of a protocol is the amount of memory space re-
quired to solve an instance of the problem as a function of the size
of the input.

Computational complexity and Running time Usually the term com-
putational complexity is used to describe how many steps are needed for an
algorithm to solve a problem, using some model computing device such as the
Turing machine. In this document we will not make such a strict use of the
term. We will also make a distinction between running time and computa-
tional complexity because protocols that involve interaction with other peers
have running time that is not depending only on the computations performed

1broadcasted.
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6 CHAPTER 2. BUILDING BLOCKS

locally. With this distinction we have a measure of both concepts. We define
the computational complexity term as

The computational complexity of a problem with respect to a set of
operations is the amount of those operations needed to solve an in-
stance of the problem as a function of the size of the input.

It can be clearly seen that by selecting complex operations to measure the
computational complexity, we could get a measurement of the running time. In
those cases we will explicitly make use of the term “running time”. A more
concrete definition of running time is then2

The running time of a protocol is its computational complexity with
respect to a set of operations that if each one of them accounts for a
number of time slots3, in total they account for the total number of
time slots used by the protocol.

In the rest of this document when we simply reference computational complexity,
we imply the complexity with respect to modular exponentiations, which is the
most expensive operation in the described algorithms.

Round complexity A simplistic approach to define the round complexity
would be to set it to be the number of messages exchanged, or the number of
broadcasts. However there are cases where parties do independent broadcasts
of messages in parallel without any kind of interaction between them. This
if studied with the definition above would result to, for n parties, a round
complexity of n rounds. However it can be argued that since those broadcasts
can be executed in a single time slot (there is no dependence between them),
this is a single round.

For this reason here we will define the round complexity to be

The number of messages exchanged during interactive computations,
when the messages depend on each other and 1 when the messages
are independently broadcasted or transmitted4.

Our definition is consistent with the usage of round complexity in [11] and [31].

Randomness complexity Here we will use a definition of randomness com-
plexity that is in accordance with [18]. The reason we decided to include this
measurement unit is that even in modern operating systems obtaining real ran-
dom bits is not only expensive but also difficult to do using real world computers
[39], [8, Generating randomness]. We define it as

The amount of random bits required by a protocol, as a function of
the size of the input.

2No parallelism of operations is taking into account by these definitions.
3Here we do not define the time slot but assume its obvious meaning.
4That is in a fictional protocol where everybody is transmitting random and independent

messages to each other, the round complexity is 1.
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2.2 El-Gamal cryptosystem

The basis of our protocols is the homomorphic El-Gamal cryptosystem. Initially
we give a description of the normal El-Gamal cryptosystem and afterwards
discuss the differences.

The El-Gamal cryptosystem is a public key system and works in a (multiplica-
tive) subgroup S of order q of a group G, where q a prime5. This subgroup
is generated by an element g ∈ G and it is assumed that it is large enough so
Decisional Diffie Hellman (DDH) and Discrete Logarithm (DL) problems are
infeasible. The basis for the algorithm are a public key, h, and private key, x,
pair such that h = gx ∈ S.

For this study we selected Z∗p as the group, where p is a prime. The subgroup
S will then be generated by an element g ∈ Z∗p of order q and thus its elements
will be of the form gu, u ∈ Zq. Whenever possible, we will try to be abstract to
allow for versions of the algorithm that work in other groups than Z∗p.

2.2.1 Encryption

Messages to be encrypted are represented by elements of the subgroup S. The
procedure to encrypt a message m is done as follows

• A random element r is generated in Zq

• The encrypted value is then a pair in S× S calculated as

(a, b) = (gr,mhr), a, b ∈ S

2.2.2 Decryption

By taking

b · (ax)−1 =
mhr · g−rx =

mgxr · g−rx =
m

we retrieve m if the private exponent x is known.

2.3 Homomorphic El-Gamal cryptosystem

A property that the El-Gamal cryptosystem [30] has is that given two encrypted
values (a0, b0) and (a1, b1) of m0 and m1 respectively we can compute an en-
cryption of m0m1 in the group without the need for the private key x. Note

5Actually El-Gamal can work using any subgroup, but in our study we use a subgroup of
prime order q for reasons that will be explained later on.
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that we use the multiplication (·) between two encrypted values a bit liberally.

a0 = gr0 , b0 = m0h
r0

a1 = gr1 , b1 = m1h
r1

(a0, b0) · (a1, b1) = (gr0+r1 ,m0m1h
r0+r1) = (gr2 ,m0m1h

r2)

The homomorphic El-Gamal is a modification of the El-Gamal system that has
the property that given two encryptions of m0 and m1 the encryption of m0+m1

can be calculated. That can be achieved if encryption of an element m is defined
as

(a, b) = (gr, gmhr), a, b ∈ S

Then it can be easily seen that by multiplying two encrypted values of m0

and m1 we get the encryption of m0 + m1. It should be noted though that
decryption is not easy in this cryptosystem since with the decryption algorithm
shown above we get gm as the output value. From this value since the DL
problem holds we cannot retrieve m in general. In special cases where m is
restricted to small set A of values the value of m can be retrieved by testing
equality with a precomputed set of gk, k ∈ A.

We can now see that with this scheme the message m needs only to be expressed
as an element in Zq, because then gm is an element of the subgroup.

2.3.1 Equivalence of encrypted values

We define an equivalence relation in S× S as

(a, b) ∼ (c, d) iff b · a−x = d · c−x

This relation is a group congruence since it is compatible with the group struc-
ture. The cosets (equivalence classes) are6 q and are denoted as [[y]], y ∈ Zq.

In other words so far we have defined an encryption scheme, the form of the
encrypted values and when we consider them equal7. In the next section we
also define what we can do with the encrypted values.

2.3.2 Operations and symbolism

Let’s now examine some operations that are possible with the homomorphic
El-Gamal cryptosystem and give some symbols that will be used throught this
document to represent them.

• Addition: we can obtain the encrypted sum of the plaintext of two en-
crypted values [[x]]⊕ [[y]] as

6Because b · a−x = gm · hr · g−rx = gm ∈ S, and S is of order q.
7Note that equality of two encrypted values cannot be checked if the private key is absent.
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[[x]]⊕ [[y]] = (gr, gxhr) · (gr1 , gyhr1)
= (gr+r1 , gx+yhr+r1)
= (gr2 , gx+yhr2)
= [[x + y]]

• Subtraction: similarly the subtraction of two encrypted values [[x]] 	 [[y]]
as

[[x]]	 [[y]] = (gr, gxhr) · (gr1 , gyhr1)−1

= (gr−r1 , gx−yhr−r1)
= (gr2 , gx−yhr2)
= [[x− y]]

• Multiplication of the plaintext value with an element from Zq: c⊗ [[x]] can
be performed as

[[x]]⊗ c = (gr, gxhr)c

= (gcr, gcxhcr)
= (gr2 , gcxhr2)
= [[c · x]]

Division is possible by multiplying with the inverse of the element in ques-
tion. This is possible since Zq is a field8.

• Addition (and subtraction) with an element from Zq: c⊕ [[x]] as

[[x]]⊕ c = (gr, gxhr · gc)
= (gr, gc+xhr)
= [[x + c]]

[[x]]	 c = (gr, gxhr · g−c)
= (gr, gx−chr)
= [[x− c]]

• Random re-encryption is defined as

[[x]]R = [[x]] · (gr1 , hr1), r1 ∈R Zq

This computes an encrypted value for the same message that is distin-
guishable from the previous value.

8That also explains our choice of taking g to be a generator of a subgroup of prime order
q rather than being a generator for the group or a random subgroup.
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What we will add for the purposes of the Approximate matcher to this list of
operations is the following

• Binary Multiplication: the multiplication of two encrypted values, one of
x or y must be in the {0, 1} range;

[[x]]⊗b [[y]] = ConditionalGate([[x]], [[y]])
= [[x · y]]

The Conditional Gate will be discussed in later sections of this chapter.

2.4 Threshold El-Gamal cryptosystem

We will describe a (t, l)-threshold cryptosystem [30] based on El-Gamal. That
is a cryptosystem that divides the knowledge of the private key to l parties, such
that at least t of them are required for decryption. As with other public key
cryptosystems the public key is available for anyone to perform encryptions.

2.4.1 El-Gamal threshold key generation

In the following paragraphs we give a private key generation process based on
Feldman’s Verifiable Secret Sharing (VSS) protocol, as described in [30]. We
give the general case where t ≤ l. The special case where t = l which may be
interesting for the two party case is described in Appendix B.

General case t ≤ l

1. Each party i selects a random polynomial pi(x) =
∑t

z=0 ai,zx
z ∈ Zq[x]9

of degree less than t and broadcasts a commitment to the value of gsi ,
where si = pi(0);

2. The public key h is then set as h = g
Pl

i=1 si ;

3. Each party i sends shares sij = pi(j) to participant Pj in private, for
1 ≤ j ≤ l. In addition party i broadcasts commitments Bi,z = gai,z ,
0 ≤ z < t. Upon receipt of share sij , participant Pj verifies its validity by
the equation

gsij =
t−1∏
z=0

Bjz

i,z = g
Pt−1

z=0 ai,zjz

(2.1)

4. Each party i sums all its received shares sji to obtain

xi =
l∑

j=1

sji =
l∑

j=1

pj(i)

9Note that when working on the exponent we are modulo q which is the order of the
generator g and the output values such as ga are modulo p which is the field we are working
on.
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which is its share of the private key x. The verification key of the party
is defined as hi = gxi . This verification key can be used to prove correct
usage of the private share (see Section 2.6.3). Other parties than i can
compute this key using the broadcasted values Bi,z as

l∏
j=1

t−1∏
z=0

Bjz

i,z = g
Pl

j=1
Pt−1

z=0 ai,jjz

= gxi = hi

After the key generation takes place the secret key is actually the p(0) value of
the polynomial

p(x) =
t∑

z=0

l∑
i=1

ai,zx
z

which is the sum of the individually generated polynomials and each party
holds a share xi which is equal to p(i). Encryption is performed as with plain
El-Gamal using the public key h. For the decryption the reconstruction of the
polynomial p(x) is required and this will be discussed in a following section.

This protocol’s performance is outside the scope of this study thus we will not
focus into it. For the interested reader a more detailed discussion is in [30].
Similar protocols can be found in [28] and [12].

2.4.2 El-Gamal threshold decryption

In order to decrypt an encrypted value with the public key h the secret value
from the polynomial p(x) has to be used but in a way that it doesn’t get re-
vealed to any of the parties.We give a description of the method as well as some
complexities because this is an important part of the conditional gate, which
will be discussed later.

Description

To decrypt a message (a, b), by a set of players A, where each player has a
private share xi the following steps are used. Note that A must have at least t
players, which is the minimum number needed for deciphering.

1. Each party i computes di = axi and broadcasts di and a proof that di =
axi (for the proof see Section 2.6.3);

2. Each party verifies the received proofs and calculates the secret message
as

m =
b∏

i∈A d
λA,i

i

, λA,i =
∏

j∈A\{i}

j

j − i
(2.2)

which is based on Lagrange’s interpolation algorithm, to reconstruct a
polynomial passing through t points.

We have to note here that the decryption protocol above has to be performed in
a private channel between the parties that share the private key, or the output
of the decryption will become known to any eavesdroppers.
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Computational complexity

Each party must compute a single exponentiation (di = axi), calculate Equa-
tion (2.2), generate one proof and verify t − 1 proofs. The proof is described
in Section 2.6.3 on page 19 and each one needs10 two exponentiations to be
computed and four to be verified. In both cases the output of a hash function
is required.

To calculate the Equation (2.2) each party has to perform t · (t − 1) + t = t2

multiplications, t exponentiations and one division. Here we will focus on the
complexity of the exponentiations and ignore the complexities of multiplications
and other operations because their complexity is at least one order of magnitude
lower than exponentiations. Thus the overall bit complexity with respect to
exponentiations11 is

1 + 2 + 4(t− 1) + t = (2.3)
= (5t− 1) (2.4)

Memory space requirements

For these computations the storage of the di values is the only requirement. In
a case where there are no cheating parties the required space is

t log2 p bits (2.5)

Randomness complexity

It is interesting to see the randomness complexity per party of the algorithm.
For the decryption step, no random numbers are required. However the proof
requires one random number u of bit size log2 q to be generated. So the require-
ments for this algorithm, in bits, are

log2 q (2.6)

Round complexity

Eventhough the number of messages exchanged in this phase is t the round
complexity is

1 = O(1) (2.7)

That is because none of the messages depend on each other and according to
our definition they compose a single round.

10Here we violate the order by doing a forward reference, but we believe it serves keeping
the description simpler.

11Modular exponentiation complexity is of order O(m3).
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Communication complexity

Thus we can see that, if no dishonest parties exist, for n parties and for threshold
t we need to broadcast t messages to perform this protocol. Each message
contains a number from the group di and a non-interactive proof consisting of
two values from the subgroup. Thus the communication complexity is

t(log2 p + 2 log2 q) (2.8)

The communication complexity for this algorithm remains the same if members
in the set A increase or decrease, given that they are more than t. It only
depends on the number t and the field.

2.5 Conditional gate

The conditional gate [31] is an interactive protocol that computes the product
of two homomorphic encrypted values, as long as one of these values is from
a binary12 domain. The computations occur between parties that share the
private key of the encrypted values. We focus on this protocol by giving a
detailed description and complexities since the conditional gate is the most
important building block of the Approximate matcher protocol.

2.5.1 Preliminaries

In this protocol the notion of a Pedersen commitment of a number is used. That
is given a randomly selected s ∈ S \ {1}, a commitment to a number m ∈ Zq

is value b = gmsr, with r ∈R Zq. That commitment is revealed by opening the
values of m and r. We will symbolize the commitment of a value m as �m�.
For more information on the commitment and in-depth reasoning for its usage
in the protocol see [31].

2.5.2 Description

We give a rough idea of the protocol for input values [[x]] and [[y]] where x ∈ {0, 1}
and y ∈ Zq. Initially convert x to {−1, 1} range, blind both by letting parties
multiply it with a random integer from the {−1, 1} range and then decrypt the
blinded [[x]] using threshold decryption. That way a multiplication of [[x]] and
[[y]] can be calculated as x⊗ [[y]]. The detailed protocol for n parties is shown in
Figure 2.1.

Remember that we have threshold decryption which means that at least t parties
are required to decryption. With t being the threshold in El-Gamal decryption.

12With the term binary we explicitly mean a two-valued domain and not only the {0, 1}
domain.
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Input: [[x]], [[y]], x ∈ {0, 1}, y ∈ Zq

Steps:
1. All parties convert the binary input value to {−1, 1} range

[[x′]] = (2⊗ [[x]])⊕ (−1)
[[x−1]] = [[x′]]
[[y−1]] = [[y]]

2. For each party starting with party i=0, blind [[x]] and [[y]]
(a) generate si ∈R {−1, 1}
(b) set �si�= gsihr

(c) [[xi]] = [[si ⊗ [[xi−1]]]]R
(d) [[yi]] = [[si ⊗ [[yi−1]]]]R
(e) generate proof Pi to assure that [[xi]] and [[yi]] are cor-

rectly generated; Also called Double private multiplier
proof; For the proof see Section 2.6.2;

(f) broadcast Pi, �si�, [[xi]], [[yi]] to all parties;
3. All parties verify the proof Pi and save �si�, 0 ≤ i ≤ n
4. El-Gamal threshold decryption of [[xn]]
5. Check if xn is in the {−1, 1} range

If not ask for proofs that si ∈ {−1, 1} and restart the pro-
tocol (without the cheating party). The proof is described
in Section 2.6.1.

6. All parties undo the initial conversion of x and y

[[x′y]] = [[yn]]⊗ xn

[[xy]] = ([[x′y]]⊕ [[y]])⊗ (2)−1

Output: [[xy]]

Figure 2.1: The Conditional Gate.

2.5.3 Computational complexity

Here we will try to give the computational complexity per party. For the Dou-
ble private multiplier proof Pi to be generated 10 exponentiations are required
whilst to verify it 15 are required. For the protocol itself it is tricky to calcu-
late the needed exponentiations. Initially to convert x to the range {−1, 1} a
squaring is required, but we will not count this as an exponentiation. Similarly
when raising to the power of −1 or 1 we will also not count it. Thus the expo-
nentiations left are the one from Pedersen commitment and 4 exponentiations
for the random re-encryption operations.

Overall the computational complexity for exponentiations, including the El-
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Gamal decryption step, is

10 + (n− 1)(15)︸ ︷︷ ︸
private multiplier proof

+ 5︸︷︷︸
conditional gate

+ (5t− 1)︸ ︷︷ ︸
El-Gamal decryption

=

= (5t + 15n− 1)

When n = t we have the minimum numer of parties that can perform this
protocol. For this number of parties the complexity becomes

(20n− 1) (2.9)

2.5.4 Memory space requirements

Each party must store [[x′]], [[y]],�si�, and temporarily in order to verify the
proof, the values Pi(= 5 log2 p), [[xi]], [[yi]] are needed. The size of a homomorphic
encryption is 2 log2 p bits, and a Pedersen commitment occupies log2 p bits. By
including the El-Gamal decryption, from Equation (2.5), we get an upper bound
to the total space requirements

(Conditional gate) + (El-Gamal decryption) =
= (n− 1)(14 log2 p) + (t log2 p) =

= (14n + t− 14) log2 p =
= O(n log p)

where n is the number of parties executing the protocol and t the threshold
for El-Gamal decryption. For the minimum number of parties possible the
complexity is

(15n− 14) log2 p (2.10)

2.5.5 Randomness complexity

In the conditional gate protocol the random numbers needed are in

• generation of si ∈ {−1, 1}, 1 bit;

• Pedersen commitment for �si�, log2 q bits;

• re-encryption of [[xi]] and [[yi]], log2 q bits each;

• proof Pi requires 4 log2 q bit numbers;

• El-Gamal decryption needs 1 number of log2 q bits (see Equation (2.6)).

Thus in total the requirements, of random bits per party, for the conditional
gate are

(8 log2 q) + 1 (2.11)
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2.5.6 Round complexity

The number of rounds in this protocol also depends on the number of rounds
in the El-Gamal decryption. In the two party case the number of rounds is
constant since only two messages are exchanged for the conditional gate and
two for the El-Gamal decryption. That is complexity of O(1). In the n-party
case the number of rounds is n plus the single round of the El-Gamal decryption.
Thus the complexity is

n + 1 = O(n) (2.12)

How a run of the protocol looks like, when n = t, is shown in Figure 2.2. The
two party case is shown in Figure 2.3.

Party i rest n− 1 parties

←− P1,�s1�, [[x1]], [[y1]]
←− P2,�s2�, [[x2]], [[y2]]

[. . .]
←− Pi−1,�si−1�, [[xi−1]], [[yi−1]]

Pi,�si�, [[xi]], [[yi]] −→
[. . .]

←− Pt,�st�, [[xt]], [[yt]]∣∣∣ ←− d1∣∣∣ ←− d2∣∣∣ [. . .]
single ←− di−1

round di −→∣∣∣ [. . .]∣∣∣ ←− dt

Figure 2.2: The message sequence of the conditional gate.

Party 1 Party 2

P1,�s1�, [[x1]], [[y1]] −→
←− P2,�s2�, [[x2]], [[y2]]

d1 −→
←− d2

Figure 2.3: The message sequence of the conditional gate for two parties.
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2.5.7 Communication complexity

In this section we will try to examine the total complexity of the exchanged data
of the conditional gate for n parties and threshold t. In the protocol above we
can see that in a run of the protocol where everybody is honest, each party has
to broadcast the proof Pi, �si�, [[xi]], [[yi]] and perform an El-Gamal threshold
decryption.

The proof outputs 5 values from the subgroup we are working on (see Section
2.6.2), thus in total we need to transfer 5 values from the subgroup Zq and
5 values from the group Z∗p. Thus, by also considering Equation (2.8) the
complexity in bits would be

(Conditional gate compl.) + (El-Gamal decryption compl.) =
= 5n(log2 p + log2 q) + t(log2 p + 2 log2 q) =

= (5n + t) log2 p + (5n + 2t) log2 q =
= O(n log p)

When performed by the minimum possible number of parties possible, that is
n = t, the complexity becomes

(6 log2 p + 7 log2 q)n (2.13)

As an example we will test the case where the prime p is a 1024 bits number, q
is 160 bits and two parties execute a conditional gate. Then both parties have
to transmit at least 14528 bytes.
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2.6 Sigma proofs

In this section we list the proofs that are used throughout the discussed pro-
tocols. Those proofs are used to ensure the protocols’ resistance to malicious
participants that violate the protocol rules and send specially crafted values in
order to gain advantage over the other participants, for example by learning the
content of an encrypted value.

A Sigma Proof or Σ-Proof [30, Zero-Knowledge Proofs] is a class of protocols
between parties, called the prover and the verifier. In these protocols the prover
convinces the verifier on the validity of a statement or on the knowledge of
something. Here our proofs are based on the so-called sigma protocols with
the Fiat-Shamir[9] heuristic applied. This allows for non-interactive proofs of
knowledge.

For a non-interactive Sigma Proof to be evaluated the usage of a cryptographic
hash function is required, that acts a random oracle13 H. The input to the hash
function are an arbitrary number of values from the Z∗p group. When these
values are interpreted as integers care must be taken to avoid collisions that
arise from the concatenation of them14.

2.6.1 Conditional gate: Value in range

This proof is used in the Conditional Gate, at a case of a failure, to verify that
the values sent by a participant are indeed within a range. More specifically
for the Pedersen commitment �si�= gsihr, we need a Σ-Proof that shows
that si ∈ {−1, 1} and r is known. The proof that we are going to use is an OR
composition for the value of si. The non-interactive version is shown in Table
2.4.

2.6.2 Conditional gate: Double Private multiplier

In the conditional gate, when the values of xi and yi are calculated as [[xi]] =
[[si ⊗ [[xi−1]]]]R and [[yi]] = [[si ⊗ [[yi−1]]]]R, the party that calculated the value has
to send a proof that his result has been correctly generated. That is, given

�si� = gsihr

[[xi−1]] = (c, d)
[[xi]] = (gz, hz) · (csi , dsi) =

= (gzcsi , hzdsi)
[[yi−1]] = (e, f)

[[yi]] = (gw, hw) · (esi , fsi) =
= (gwesi , hwfsi)

13This is an ideal hash function. For a formal definition see [30].
14An example would be H(5, 5) = H(55). The solution we follow is to expand the numbers

to the maximum size allowed in their field (by prepending zeros). The example above would
then be H(05, 05) 6= H(55) in the field Z59. This method is similar to the one used in [27].
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Prover

B = gsihr B = gsihr

si = −1 si = 1
r2, c2 ∈R Zq r1, c1 ∈R Zq

a1 = hu1 a1 = (Bg)−c1hr1

a2 = (B−1g)c2hr2 a2 = hu2

c = H(a1, a2, B) c = H(a1, a2, B)

c1 = c− c2 c2 = c− c1

r1 = u1 + rc1 r2 = u2 + rc2

Output: r1, r2, c1, c2

Verifier

Input: r1, r2, c1, c2

c1 + c2
?= H((Bg)−c1hr1 , (B−1g)c2hr2 , B)

Figure 2.4: Non-interactive sigma proof for the conditional gate. It ensures
that the Pedersen commitment was properly generated.

and that w, r, z ∈R S one has to prove knowledge of r, si, z, w satisfying

A = gsihr

B = gzcsi

C = hzdsi

D = gwesi

E = hwfsi

This consists of AND and EQ compositions for the values above. The non-
interactive version of the sigma protocol for this proof is shown in Figure 2.5.

2.6.3 El-Gamal threshold decryption

In Table 2.6 we list a non-interactive sigma proof used in the El-Gamal threshold
decryption (see Section 2.4.2 on page 11). With this proof a party proves that
the value di he produced was calculated using his private share. It is an EQ
composition for the values di = axi and hi = gxi .
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Prover

A = gsihr, B = gzcsi ,
C = hzdsi , D = gwesi , E = hwfsi

u1, u2, u3, u4 ∈R Zq

a1 = gu1hu2

a2 = gu3cu1

a3 = hu3du1

a4 = gu4eu1

a5 = hu4fu1

c = H(a1, a2, a3, a4, a5, A, B,C,D,E)

r1 = u1 + csi

r2 = u2 + cr
r3 = u3 + cz
r4 = u4 + cw

Output: (r1, r2, r3, r4, c)

Verifier

Input: (r1, r2, r3, r4, c)

c
?= H(gr1hr2A−c, gr3cr1B−c, hr3dr1C−c, gr4er1D−c,

hr4fr1E−c, A, B,C,D,E)

Figure 2.5: Non-interactive sigma proof for double private multiplier.

2.6.4 Private XOR

In the case where a party wants to compute the exclusive or of an encrypted
value [[y]] = (a, b) with a known value x, we list a non-interactive sigma proof,
to prove that it has been correctly calculated and x is known.

The way to compute the XOR is

[[x xor y]] = [[[[y]]⊕ x	 2(x⊗ [[y]])]]R
= [[((1− 2x)⊗ [[y]])⊕ x]]R

Thus given the encrypted value (a, b) = [[y]] we have to calculate a value (c, d) =
[[x xor y]] such as

(c, d) = (a1−2x, b1−2xgx) · (gr, hr), r ∈R Zq

= (a1−2xgr, b1−2xgxhr)

The proof for the correctness of this result and the knowledge of x is shown in
Figure 2.7.
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Prover

di = axi , hi = gxi

u ∈R Zq

a1 = au

a2 = gu

c = H(a1, a2, di, hi)

r = u + cxi

Output: (r, c)

Verifier

Input: (r, c)

c
?= H(ard−c

i , grh−c
i , di, hi)

Figure 2.6: Non-interactive sigma proof for the El-Gamal threshold decryption.

Prover

A = a1−2xgr, B = b1−2xgxhr

u1, u2 ∈R Zq

a1 = a1−2u1gu2

a2 = b(b−2g)u1hu2

c = H(a1, a2, A, B)

r1 = u1 + cx
r2 = u2 + cr

Output: (r1, r2, c)

Verifier

Input: (r1, r2, c)

c
?= H(a1+c−2r1gr2A−c, b1+c−2r1gr1hr2B−c, A, B)

Figure 2.7: Non-interactive sigma proof for private XOR.
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Chapter 3

Approximate Matcher

3.1 Approximate Matcher protocol

The Approximate matcher is a Profile matching protocol that checks whether
the Hamming distance of two encrypted bitstrings is within a given threshold
T . The protocol does not leak any other information on the bitstrings.

We give the protocol in brief for n parties. We assume that the parties already
posses threshold El-Gamal key shares.

1. Use exclusive or to the given bitstrings to get the different bits in them;

2. add the individual bits of the output of the XOR step;

3. compare the output of the addition step with the threshold. If it is less or
equal to return true. Otherwise false.

An example of how those steps work, when the values are not encrypted is
shown in Figure 3.1. For the real protocol, those steps have to be executed using
encrypted values and thus the algorithms discussed in the previous chapter will
be used.

In the following sections we give a detailed description of the protocol as well as
the complexities that arise from a “by the book” implementation. In the next
chapters we demonstrate that there is much room for improvement.

We also describe briefly some variants of the Approximate matcher protocol.
Those apply for the cases where the bitstrings are known to some parties, or
the threshold is also encrypted and combinations.

3.2 Description

The description of the algorithms give here is based on [32]. According to the
authors the algorithms used in that paper were selected to minimize compu-
tational complexity versus round complexity. In our study we focus on this

23
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Input: the bit strings 01011, 11111 and threshold is 1.

1. 01011 XOR 11111 = 10100
2. 1+0+1+0+0 = 2
3. 2 ≤ 1

Output: false

Figure 3.1: The Approximate matcher protocol on non-encrypted bit strings.

version of the protocol. For the following algorithms remember that the values
are encrypted with homomorphic El-Gamal, and moreover we assume that the
minimum required number of parties are participating in the protocol, i.e, the
are equal to the El-Gamal threshold1.

Input: Two m-bit encrypted binary strings, threshold T

[[S1]] = ([[x0]], [[x1]], . . . , [[xm−1]])
[[S2]] = ([[y0]], [[y1]], . . . , [[ym−1]])

Output: If HammingDistance(S1, S2) ≤ T then true. Otherwise false.

XOR step

In this step the goal is to compute the exclusive or of the input bitstrings.
That is compute Hi = (xi xor yi), 0 ≤ i ≤ m− 1. The following algorithm from
[31] is used to calculate the exclusive or of the encrypted values:

For all 0 ≤ i < m− 1
[[vi]] = [[xi]]⊗b [[yi]]

[[Hi]] = [[xi]]⊕ [[yi]]	 (2⊗ [[vi]])
= [[xi xor yi]]

The output is the encrypted bitstring:

([[H0]], [[H1]], . . . , [[Hm−1]])

As we can see one conditional gate operation is needed for each bit to be XORed.

Addition step

Here we want to evaluate the sum of the individual bits of the output of the
XOR step. On the first sight this might look an easy step since addition is an

1We will make the reasons for this assumptution more concrete in Section 4.1.1 on page 33.
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available operation in our cryptosystem, but the tricky part is the fact that we
need2 the output as an encrypted bitstring.

Thus we will evaluate the sum using the secure adder from [32]. That is we
will add the individual bits of [[Hi]] in a way that they lead to a number in its
encrypted binary form such as ([[S0]], [[S1]], . . . , [[Ss]]).

Figure 3.2: A parallelizable addition algorithm. The circles denote a value
which can consist of any number of bits and the lines denote the number of bits
to be added.

To perform the addition we will use an addition tree such as the one in Figure
3.2. We name the values to be added [[xi]] and [[yi]], 0 ≤ i < k, with k being the
size in bits of the values to be added, initially that size would be one, but as we
move on deeper levels in the tree the size of the bitstrings increases.

We can get an encrypted binary representation of their sum [[zi]] with the fol-
lowing algorithm

[[c0]] = [[x0]]⊗b [[y0]]
[[z0]] = [[x0]]⊕ [[y0]]	 (2⊗ [[c0]])

For all 1 ≤ i < k

[[wi]] = [[yi]]⊗b [[ci−1]]
[[ci]] = [[xi]]⊗b ([[yi]]⊕ [[ci−1]]	 (2⊗ [[wi]]))⊕ [[wi]]
[[zi]] = [[xi]]⊕ [[yi]]⊕ [[ci−1]]	 (2⊗ [[ci]])

Output: ([[ck−1]], [[zk−1]], [[zk−2]], . . . , [[z0]])

Apply this algorithm for each pair of bits of [[Hi]] starting with [[H0]] and [[H1]],
then add their sums and so on. So we get a bitstring [[Si]], 0 ≤ i ≤ s that has
size3 of s = log2(m + 1) bits.

2Because it will be used by the comparison algorithm which requires two bitstrings.
3Because the maximum value of the sum is m, and every number x such that 0 ≤ x ≤ m

can be written using log2(m + 1) bits. Since we are dealing with encrypted values the result
cannot be expressed with less bits than the maximum. That is because the result is not
known, so it is not possible to remove the leading zeros.
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This algorithm only applies when adding equal bitstrings. When non equal
bitstrings are to be added, such as the case in the last step of Figure 3.2,
the values of the smaller bitstring have to be eliminated at some point in the
algorithm4.

Comparison step

In this step we need to compare the output of the addition step with the thresh-
old.

Input: [[S0]], [[S1]], . . . , [[Ss]] and T0, T1, . . . , Ts, s = log2(m + 1)

[[t0]] = [[S0]]⊗ (1	 T0)

For all 1 ≤ i ≤ s

[[vi]] = Ti ⊗ [[ti−1]]
[[ti]] = [[ti−1]]	 [[vi]]	 [[Si]]⊗b ([[ti−1]]⊕ Ti 	 (2⊗ [[vi]])	 1)

The output is

[[ω]] = 1⊕ ((−1)⊗ [[ts]])

Final step

After the comparison step the result is available, although as an encrypted
value [[ω]]. For the parties to be able to read the output, an El-Gamal threshold
decryption of [[ω]] is performed. Since the output is binary they can verify the
result by testing equality against powers of the subgroup generator.

3.3 Complexities

In the following paragraphs we try to summarize the different complexities of
this protocol given a “by the book” implementation of it. Those complexi-
ties will be used as a basis to calculate the improvement of the optimizations
discussed in the next chapters.

3.3.1 Computational complexity

In this section we will try to give the complexity of the Approximate matcher
by counting the required number of conditional gates.

4It might seem tempting to insert some encryption of zeros to make the bit strings equal
but that is not feasible since each party will calculate different encryptions of the same values,
which is undesirable.
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XOR step In the XOR phase a single conditional gate is required per op-
eration, thus in total we need as many gates as the number of bits m of the
input.

Addition step For the secure adder, a number of (m−1) secure additions are
required for the digits of an m-bit number to be added. For simplicity we will
restrict our calculations for the case where m is a power of two m = 2µ. In that
case on each level of the addition (see Figure 3.3) we have the same number of
bits to be added. The additions done in the first level require 1 bit operations,
on the second level 2 bits and so on. The total number of levels5 is log2 m.

For 1 bit addition the adder requires a single conditional gate to be evaluated,
3 for 2 bits and in general 1 + 2(m− 1) for m bit numbers.

Figure 3.3: An addition tree of a number of bits that is a power of two.

Thus the total number of conditional gates required for the secure adder is

m

2
· 1︸ ︷︷ ︸

level 1

+
m

22
· 3︸ ︷︷ ︸

level 2

+ . . . +
m

2µ
· (2µ− 1)︸ ︷︷ ︸
level µ

=

= m · 2−µ(3 · 2µ − 2µ− 3) =
= 3m− 2µ− 3 = 3m− 2 log2 m− 3

Since the output of the adder is in the range [0,m] it should consist of maximum
log2(m + 1) binary digits.

Comparison step In the comparison phase one conditional gate per bit is
required. Thus it would be

log2(m + 1) gates

Conclusion For m bit numbers we get the number of required conditional
gates, being

4m + log2(
m + 1
m2

)− 3 gates. (3.1)

5That is because on each step of the adder the numbers to be added are half of the previous
step. Thus the adder finishes when n

2k = 1 → k = log2 m. And that k would be the number
of levels.
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Based on the complexity for a single conditional gate in Equation (2.9), the
computational complexity with respect to exponentiations for n parties is

(4m + log2(
m + 1
m2

)− 3)(20n− 1)

3.3.2 Memory space requirements

In a straightforward implementation the maximum memory needed for the Ap-
proximate matcher is the memory needed by a single conditional gate. Thus
the same values as in Section 2.5.4 apply.

3.3.3 Randomness complexity

The randomness complexity in the protocol is mainly due to the conditional
gates calculations. Given that the Approximate matcher needs at most 4m +
log2(

m+1
m2 ) − 3 gates for m bit input and the calculations in Section 2.5.5, an

upper bound to the random bits required is

(number of gates) · (Randomness per gate)

= (4m + log2(
m + 1
m2

)− 3)((8 log2 q) + 1) =

= O(m log q)

As an example for an 160 bit subgroup and 32 bit input, to the Approximate
matcher , a lower limit on the number of random bytes required to be retrieved
for a Approximate matcher execution is 16900.

3.3.4 Round complexity

The number of rounds in the protocol heavily depends on the number of con-
ditional gates to be evaluated. In the conditional gate the number of rounds
required is tight to the number of players interacting. Typically we can have a
round complexity that is the number of players plus one or n + 1. And based
on the number of gates calculated the round complexity is

(number of gates) · (round complexity per gate)

(4m + log2(
m + 1
m2

)− 3)(n + 1) = O(nm)

3.3.5 Communication complexity

Given the number of the conditional gates to be evaluated and the facts from
Section 2.5.7 we can find out the communication complexity of this protocol.
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Clearly the number of bits to be exchanged is

(Max number of gates) · (complexity of each gate) =

= (4m + log2(
m + 1
m2

)− 3)(n(6 log2 p + 7 log2 q)) =

= O(mn log p)

3.4 Variants of the Approximate Matcher pro-
tocol

The Approximate matcher protocol may apply, with minor modifications, to
other cases where the threshold is encrypted or the bit strings are known, and
combinations of these cases. To classify all the cases we assume the following
possibilities for each value

• private: At least one party knows this value;

• protected: No single party knows this value; It is given encrypted.

With these cases in mind and by looking combinations of these in the bit strings
and threshold, we can see that the Approximate matcher could even be opti-
mized for some combinations.

We will try to briefly cover those cases in the following paragraphs.

3.4.1 One of the bitstrings is private

In this case there is at least one party that knows the private values of xi
6. Then

the XOR step of the protocol can be optimized by letting this party calculate
the XOR output by itself and provide a proof of correctness (see Figure 2.7 on
page 21) to the rest of the parties. To calculate the output the algorithm below
is used:

For all 0 ≤ i < m− 1
[[Hi]] = xi ⊕ [[yi]]⊗ (1− 2xi)

= [[xi xor yi]]

The output is the encrypted bitstring:

([[H0]], [[H1]], . . . , [[Hm−1]])

We call this the Private XOR step. Since it avoids any use of conditional gates,
this protocol is much more efficient and independent of the network’s properties.

The addition step is the same as with the Approximate matcher since again the
output of the XOR step is again an encrypted bitstring. The comparison step
depends on the type of the threshold.

6The selection of xi is arbitrary, that case also applies for yi.
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This case also applies when both bitstrings are private, as long as they are not
known by the same party.

3.4.2 The threshold is protected

No matter what the previous steps looked like, when the threshold is protected
only the comparison step needs to be adjusted. That is because in all cases
we get an encrypted bitstring as output from the addition step. To do the
comparison of the previous step output with the encrypted threshold [[T ]] the
following variation of the comparison algorithm is used:

Input: [[S0]], [[S1]], . . . , [[Ss]] and [[T0]], [[T1]], . . . , [[Ts]], s = log2(m + 1)

[[t0]] = [[S0]]⊗b (1	 [[T0]])

For all 1 ≤ i ≤ s

[[vi]] = [[Ti]]⊗b [[ti−1]]
[[ti]] = [[ti−1]]	 [[vi]]	 [[Si]]⊗b ([[ti−1]]⊕ [[Ti]]	 (2⊗ [[vi]])	 1)

The output is

[[ω]] = 1⊕ ((−1)⊗ [[ts]])

That algorithm has an extra conditional gate evaluation per bit than the algo-
rithm with plain T .

3.4.3 Semi-honest model

Although this study focuses on the case where malicious parties are participating
in the protocol, this requirement is not always necessary. For example when the
software used is verifiably tamper proof7 we can trust the parties to calculate
the messages correctly but we can’t trust them not to infer something from the
communication transcript and the data they obtain. In other words we consider
only passive attackers and this is called the semi-honest case model. A formal
definition of the model can be found in [23].

The Approximate matcher protocol can be more efficient in this model. That is
because the Sigma Proofs are not needed any longer and thus for a conditional
gate to be calculated all the operations for the proofs in Section 2.6.2 and Section
2.6.3 could be discarded. Given that the complexity of the conditional gate in
exponentiations is (from Equation (2.9)) 20n − 1 without the proofs will drop
to

n + 6

7We will not discuss how to do this or whether this is possible at all, but assume it could
be done.
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which is a serious improvement. By extending this to the Approximate matcher
complexity we have a complexity in exponentiations of (based on Equation (3.1))

(4m + log2(
m + 1
m2

)− 3)(n + 6) (3.2)

We can see that in this model the Approximate matcher in the two party case has
20·n−1

n+6 = 39
8 ≈ 5 times less exponentiations than the malicious model. More-

over the number of exponentiations of the private bitstring variant is further
decreased because of the lack of proofs for the private XOR phase.
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Chapter 4

Generic optimizations

In this chapter we will describe possible optimizations for the involved protocols.
Our main focus will be the conditional gate, because it is the algorithm used
most in the Approximate matcher and it has the highest complexity.

The optimizations found in this sector also apply to other protocols based on the
conditional gate. By generalizing we could also argue that these optimizations
could also apply to multi-party computations protocols that involve a high round
complexity operation.

4.1 Single conditional gate

4.1.1 Reducing the number of parties

A quite obvious but important optimization of the protocol, without an impact
on the security could be the following. Instead of performing the step 2 of
the algorithm all the n parties, a threshold t could be added, so that only t
parties interact on this algorithm. This speeds up the calculations and allows
the protocol to be executed with a lower complexity if t < n. The interacting
parties though, need to be able to perform an El-Gamal decryption, thus this
number t should be at least the same number as the threshold in El-Gamal
decryption1.

In that case the communication complexity becomes

14t log2 p

and the computational complexity drops to

(20t− 10)

1By using n parties to perform the conditional gate, instead of t does not add to security (t
is the El-Gamal threshold). That is because if t parties can conspire, they can gain advantage
in the conditional gate calculation by being able to recover the input value x, even if the
parties performing the calculation are n > t.

33
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Thus both complexities now depend on t which is less than n. This justified our
calculations for the complexities of the protocols for the case of the minimum
possible participating parties, when n = t.

Of course with this optimization robustness2 of the protocol is not lost. If a
party cheats, it is detected, eliminated and replaced by another idle party (we
assume that there are non active parties since t < n). This comes at the cost of
an additional run of the algorithm.

4.1.2 Multiple exponentiations

In several cases such as the sigma proof generation and verification the multi-
plication of two elements raised in some exponent is required. That could be
something like gxhy or axbycz and so on. These are called multiple exponenti-
ations and the time to compute them can be reduced by using algorithms such
as the ones described in [34]. In the context of this project we will not use
nor discuss further the effect of this optimization. Some reasoning behind this
decision is given in the last paragraph of Section 4.2.2.

4.2 Multiple conditional gates

In the case of the evaluation of multiple conditional gates, for n parties, several
optimizations can be applied. The goal of these optimizations is to minimize the
total execution time of the gates to be computed. The interactive nature of the
conditional gate, introduces idle time while a party is waiting for the results of
the others to be received. We show that by efficient scheduling of the operations
and applying some precomputations, improvement of the overall complexity can
be achieved.

4.2.1 Parallel initiation

When having many independent conditional gates to be evaluated there is no
reason to initiate all of them by the same party. Moreover by doing it, the other
parties will have to remain idle waiting for the output of his calculations. A
better approach is to divide the gates among all parties, thus all of them could
start computing immediately. This has the advantage that no party is left idle
and thus execution time is minimized3.

For G gates to be evaluated and n parties this method scales well since it par-
allelizes execution and may reduce the running time by the number of available
parties for computation (when G > n). Let’s check that in detail. Normally,
without any optimizations, the time needed to execute the G gates in a serial-
ized way would be nG time slots, and a time slot is the time each party needs

2This is the resilience of the protocol in respect with dishonest parties. For a detailed
discussion see [31].

3This reduces the time required for computation of a gate when the computational power
of the parties is similar and the gates are equally distributed. When a party is very slow
comparing to the others he becomes a bottleneck, no matter how the gates are initially divided.



4.2. MULTIPLE CONDITIONAL GATES 35

to evaluate his part of a conditional gate, which we assume it’s the same for
everyone4.

When this optimization is applied the running time becomes T ≈ nG
n = G,

assuming that the conditional gates to be evaluated can be equally divided to
all parties. The effect in the two party case for two conditional gates can be
seen in Figure 4.1. Remember that in this case 4 messages are required to be
exchanged per conditional gate.

It is important to note that since the running time of this method is actually
independent of the number of parties performing it, by increasing the number
of parties from n to (n + k) while maintaining the number of gates, there is no
increase in the execution time of the optimized case, whereas in the sequential
execution the time is increased by (kG) slots.

If the gates cannot be divided to all parties we use the following trick. G can be
written as G = kn + λ, with λ < n. The first part kn can be equally divided to
all parties thus takes nk time slots. λ is less than n thus it needs n time slots to
be calculated. So to sum up for a random G = kn + λ we have execution time
of

T = (k + 1)n = dG
n
en (4.1)

Figure 4.1: The effect of parallel initiation (a) in reducing time slots required
compared to sequential execution (b). The brackets represent a single time slot.

4.2.2 Precomputations

Random re-encryption and the sigma proofs require several exponentiations
that could be precomputed. For example for a random re-encryption several
numbers of the form (gr, hr), where r is random in Zq are used. Since g and

4Here we are consistent with our definition of running time, but we introduce parallelism,
thus we count time slots instead of operations to get a perception of the running time.
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h are known, they could be computed during the CPU’s idle time by a worker
thread. Similarly, the proofs require numbers of the form gu1 , hu2 , where u1, u2

are random in Zq. Thus, if precomputed, these random numbers can be later
on requested, with no cost whatsoever. Moreover given that most operating
systems produce random numbers using a Pseudo Random Number Generator,
the effect of running the PRNG during the protocol execution is also reduced.

Let’s see then how many numbers are required by this generator to produce.
Each gate requires

• 2 pairs (gr, hr) for the random re-encryptions;

• 1 number gsihr for a Pedersen commitment;

• 1 number gu1 for the El-Gamal decryption;

• 2 pairs (gr, hr) and a number hu2 for the conditional gate proof Pi (see
Section 2.6.2).

To allow easy reference to these random number pairs we name and summarize
their format in Table 4.1.

name format constrains
re-encryption pair (gr, hr) r ∈ Zq

Pedersen commitment
number

gshr s ∈ {−1, 1}, r ∈ Zq

El-Gamal decryption
number

gr r ∈ Zq

conditional gate proof
number

hr r ∈ Zq

Table 4.1: The random numbers used in precomputations.

Thus per gate we need 4 re-encryption pairs, 1 Pedersen commitment number,
1 El-Gamal decryption number and 1 conditional gate proof number.

Of course this generator does not need to calculate everything in advance. It
could work in parallel with the protocol execution and generate the numbers
using the CPU’s idle time. Note also that in most of the cases the generator
need not only to return the base raised to the random exponent result, but also
the random exponent as well5.

When this optimization is applied the computational complexity of the condi-
tional gate becomes

(20n− 10)

because now we have 9 exponentiations less per conditional gate compared to
the original complexity of Equation (2.9).

Combining with multiple exponentiations In cases were a random num-
ber is multiplied with an other one, such as grhx, where g, h, x are known and

5For example in the Sigma proofs both u1 and gu1 are required.
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r is random, it is questionable which optimization between precomputations or
multiple exponentiations is more efficient to calculate the output.

With precomputations, gr is available on demand with no cost, thus a single
exponentiation for hx and a multiplication would be required, whilst if we use
multiple exponentiations, a random number request and a double exponenti-
ation are required. Thus in this particular case, using the precomputations
method seem more efficient, although a definite answer to this problem can
only be given by studying the specific complexities of the algorithms used for
random generation, exponentiation and multiplication. This was outside the
scope of this project.

4.2.3 Combining outputs

While evaluating several independent conditional gates, it might be wise to
reduce the number of rounds needed for conditional gates as much as possible.
This could be done by every party by combining the intermediate outputs of all
the conditional gates in one packet and broadcasting it.

Although it might seem that this could be a potential waste of resources since
no parties can begin calculations before the first “big” message is transmitted.
However this is a very useful optimization for any protocol, where the number
of conditional gates that need to be evaluated is a number much larger than
the number of parties. That is because we can combine this optimization with
parallel initiation and thus no parties will remain idle.

This optimization depends not only on the number of gates that each party
has to evaluate, but mainly on the number of gates that are available to be
evaluated each point in time. This distinction might not be clear, but there
are cases where some gates depend on previously calculated data, hence they
cannot be initiated before the currently evaluated gates are fully executed.

Round complexity

If implemented naively the round complexity of m conditional gates to be eval-
uated by n parties will be (using Equation (2.12))

(number of gates) · (complexity of each gate) =
m(n + 1) = O(nm)

Whereas the round complexity of this optimization is

n + 1 = O(n)

Compared to the naive implementation the effect of this optimization is quite
impressive. That is because the round complexity for k gates is the same as the
round complexity of a single conditional gate.

On the other hand if this optimization is combined with parallel initiation then
the round complexity increases since each party initiates in parallel a different
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set of the gates, thus we have complexity of

n(n + 1) = O(n2)

But in both cases of this optimization the round complexity depends only in
the number of participants, and is independent of the number of gates that are
evaluated.

Memory space requirements

On the other hand, the memory space required for this optimization increases.
The amount of the increase is directly proportional to the number of gates that
are being calculated. Thus for m gates the memory required is

(number of gates) · (memory space per gate) =
= m(15n− 14) log2 p = O(n log p)



Chapter 5

Approximate Matcher
optimizations

In the next sections we discuss ways of improving the execution time of the
Approximate matcher protocol. Since the major component of this protocol is
the conditional gate, the optimizations discussed in the previous chapter directly
apply. In that case we discuss their effect on this protocol and calculate the
improvement in complexities.

5.1 Parallel initiation

The Approximate matcher protocol allows for a level of parallelism of operations
between parties, thus allowing optimizations such as the Parallel initiation de-
scribed in Section 4.2.1. We will study this optimization’s effects on each phase
of the Approximate matcher protocol.

XOR step In the XOR phase several independent conditional gates have to
be evaluated making them suitable for parallel initiation. In the case of an m-bit
string, m gates need to be calculated. By using the result from Section 4.2.1 we
get an execution time for the XOR phase of

dm
n
en

where T is the amount of time needed by a single party to perform the condi-
tional gate.

Addition step The secure adder, if implemented properly allows for a level
of parallelization. Instead of summing the first two bits, adding to their sum the
third, and so on (see Figure 5.1), a better algorithm that is suited for parallel
initiation is needed. This is achieved, by applying summation to distinguished
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pairs of bits, and then adding their sum (see Figures 3.2 and 3.3). In that case
the time needed for the adder would be

µ∑
i=1

(dm(2i− 1)
n2i

en)

The formula above is derived by summing the conditional gates per level in the
addition tree1 and applying Equation (4.1).

Comparison step The third part of the algorithm, the secure comparator
cannot be parallelized. That is because every step of it depends on previous
outputs, thus forbidding parallelization. Thus, given the input is log2 m + 1
bits and we need one conditional gate per bit, we have running time of

n log2 (m + 1)

Conclusion In total the running time would be

T = dm
n
en︸ ︷︷ ︸

XOR

+
µ∑

i=1

(dm(2i− 1)
n2i

en)︸ ︷︷ ︸
addition

+n log2 (m + 1)︸ ︷︷ ︸
comparison

=

= n(dm
n
e+ log2 (m + 1) +

µ∑
i=1

dm(2i− 1)
n2i

e) ≈

≈ (m + n log2 (m + 1) +
µ∑

i=1

m

2i
(2i− 1)) =

= (m + n log2(m + 1) + (−3 + 3m− 2 log2 m)) =
= (4m + n log2(m + 1)− 2 log2(m)− 3) =

= O(m + n log(m + 1))

We can see that the term which depends on the number of parties, n log2(m+1),
is due to the comparison step which is sequential and the other terms that are
independent of the number of parties are due to XOR and addition steps. Thus
we see that as parties increase the comparison step becomes the bottleneck while
as the bitstrings increase the bottlenecks are the XOR and addition steps.

But let’s now see at which at which level the above can improve the efficiency
of the Approximate matcher . We try the fraction

(running time with parallel initiation)
(running time without parallel initiation)

1See the discussion in Section 3.3.1 for how the gates per level are calculated.
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which will give the improvement in execution time. This is

(4m + n log2(m + 1)− 2 log2 m− 3)
(4m + log2(m + 1)− 2 log2 m− 3)n

=

=
(4m + log2(m + 1)− 2 log2 m− 3) + (n− 1) log2(m + 1)

n(4m + log2(m + 1)− 2 log2(m)− 3)
=

=
1
n

+
(n− 1) log2(m + 1)

n(4m− 2 log2 m + log2(m + 1)− 3)

and by taking the limit of m to infinity we have the improvement level for large
bit strings. That would be

lim
m→∞

(
1
n

+
(n− 1) log2(m + 1)

n(4m− 2 log2 m + log2(m + 1)− 3)
) =

1
n

(5.1)

Figure 5.1: A sequential addition algorithm.

Thus we see that this scheduling optimization can be up to n times faster, for
n parties, without any change in the computational complexity.

5.2 Precomputations

Since the operation used most during the Approximate matcher protocol exe-
cution is the conditional gate (see Section 4.2.2) we expect precomputations to
increase the execution speed of the Approximate matcher . The increase factor
depends directly on the number of gates that need to be calculated (see Section
3.3.1), although the way precomputations are applied should not be disregarded.
When precomputations occur long time before, the complexity of each condi-
tional gate drops to the level seen in Section 4.2.2. Otherwise, when they occur
during the protocol execution by utilizing idle time, their effect heavily depends
on the availability of idle time.
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random number type amount needed
re-encryption pair m

2 · 4 = 2m
Pedersen commitment number m

2

El-Gamal decryption number m
2

conditional gate proof number m
2

Table 5.1: The amount of numbers that need to be delivered by the random
number generator for each iteration of the XOR step and the first level of the
addition step.

Two party case

Here we will elaborate more in the two party case where the random generator
starts simultaneously and runs in parallel with the protocol. In that case we
will focus on the random number requirements between I/O time. The I/O time
acts as idle time for the parallel random generator since almost no CPU time is
used at that point.

For m-bit input to the Approximate matcher protocol we expect each party to
calculate m

2 gates for each iteration2 of the XOR step, when parallel initiation
of the gates is used. Thus given the needs per gate (shown in Section 4.2.2)
the amount of numbers that the random generator should compute in between
these steps is shown in Table 5.1.

In the addition step the maximum number of parallel executed conditional gates
is on the first level, where we have m

2 gates at a time. Thus the table for the
needs of XOR step still applies. In the comparison step we have only a single
gate to be calculated at a time.

So for the Approximate matcher protocol an ideal random generator should
be able to deliver the amount of numbers shown in Table 5.1 at once when
requested. That means that this amount of numbers should be generated during
I/O and idle time.

5.3 Combining outputs

Round complexity

As described in Section 4.2.3, it is possible to reduce the number of rounds of the
executed conditional gates by combining their outputs and transmitting them in
a single message. This of course requires a level of parallelism in the calculated
gates. We try to calculate the effect of this optimization on the Approximate
matcher protocol.

XOR step The XOR step can make heavy use of this optimization. The
fact that all the conditional gates are independent allows for their intermediate

2By iteration we mean the point where both parties have to communicate to calculate the
conditional gates.
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results to be combined. Thus the number of rounds for the XOR step drops to
the number of rounds of a single conditional gate, which is n + 1 for n parties.
That is independent of the size of the input.

Addition step The number of gates that are executed in parallel for m-
bit input, when m is 2µ, depends on the level of the addition tree. It has
been calculated in the Computational complexity section (Section 3.3.1) that
we have log2 m levels of the addition tree and on each level k there are m

2k ·
(2k − 1) conditional gates to compute. At each time only m

2k can be executed
simultaneously. That means that the number of rounds for the addition step
would be

(rounds per gate)(number of gates) =
= (n + 1)( 1︸︷︷︸

level 1

+ 3︸︷︷︸
level 2

+ . . . + (2µ− 1)︸ ︷︷ ︸
level µ

) =

= (n + 1) · (µ2) =

= (n + 1)(log2
2 m) rounds

Comparison step During the comparison step all required conditional gates
are dependent thus the use of this optimization does not improve anything. The
number of rounds is again

(n + 1) · (log2(m + 1))

Conclusion Thus the total number of rounds, for n parties and m-bit strings,
when using this optimization would be

n + 1︸ ︷︷ ︸
XOR

+(n + 1)(log2
2 m)︸ ︷︷ ︸

addition

+(n + 1) · (log2(m + 1))︸ ︷︷ ︸
comparison

=

= (n + 1)(log2
2 m + log2(m + 1)) =

= O(n log2 m)

This is quite an improvement of the original version which had round complexity
of O(nm).

Memory space requirements

The memory needed for the Approximate matcher with the above optimization
depends basically on the number of gates to be calculated simultaneously. The
XOR phase is the phase with the most independent conditional gates to be
calculated thus this would be the most memory consuming. If we assume k-bit
strings, n parties and ω the number of gates that each party can calculate in
parallel, then each party has to calculate at once at most

[
k

nω
] gates
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Thus

(Max simult. number of gates) · (Memory needed per gate) =

= [
k

nω
](15t− 14) log2 p bits

This value is divided by the number of parties when parallel initiation is applied
and is increased by the memory cache for precomputations.

5.4 Combining optimizations

In several cases combining optimizations might be negative for some factors.
For example the parallel initiation method when combined with the precom-
putations method might not improve performance as expected. That would
be because precomputations depend on the idle time of the protocol, and with
parallel initiation the idle time is dramatically reduced.

The same applies on the mixing of the parallel initiation with the round re-
ducibility. As we saw in the previous chapter (see Section 4.2.3) we expect the
number of rounds to increase at maximum by a factor of the number of players.



Chapter 6

Architecture of the software

For the purposes of this project we developed an implementation of the algo-
rithms and the protocols discussed in the previous chapters. Here we discuss
the requirements we set for this implementation and the high level architecture
of it.

6.1 Requirements

The main purpose of this implementation is to act as a tool for evaluation
of the performance of the underlying algorithms. Those algorithms are to be
implemented only in the 2-party setup, however that should be in way that it
can be easily extended for the n-party case. All the requirements that were set
for this implementation are listed in a formal detailed format below.

1. Implement El-Gamal threshold key generation for 2 parties.

2. Implement El-Gamal key encryption.

3. Implement El-Gamal threshold key decryption for 2 parties.

4. Implement the precomputations optimization to be used in multiple con-
ditional gates evaluation.

5. Implement the parallel initiation optimization to be used in multiple con-
ditional gates evaluation.

6. Implement the Conditional gate for 2 parties.

7. Implement the Approximate matcher for 2 parties that both of them holds
an equal length bitstring.

8. The threshold should be public or given in encrypted form.

9. The communication protocol between the parties is TCP/IP in a peer to
peer connection.

10. The communication protocol should be defined in an easy to extend pro-
tocol, such as ASN.1 or XML.

45
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11. No external threats are to be considered.

12. Be able to handle a second application of profile matching, and demon-
strate this by implementing the variants of the Approximate matcher .

13. Be designed in a way that it is easy to reuse components.

14. Run on the Win32 platform.

In addition to these requirements some additional functionality was added, dur-
ing implementation time, to fulfill the needs for the testing phase. Those were

• precise timing of the Approximate matcher protocol;

• calculation of the application’s idle time;

• usage statistics of the random cache;

• unit testing and benchmarks.

6.2 Threats

The threat that our implementation has to cope with, is Cheating parties that
participate in the protocol.

No external threats are to be considered, such as attackers that cause a denial of
service attack, attackers that remove, add or replay messages from the stream.
That is because the protocol is assumed to run over an already secure layer,
such as TLS. Although this implementation will not include this feature, it is
assumed to be provided in a real world deployment.

As a future extension possibility we note that the structure of the Approximate
matcher protocol allows for integration with a security layer. That is because of
the initial step which is key generation, the peers are provided with private and
public key shares, that they can use later on for secure communications. Thus
the implementation should not forbid a future extension to support a secure
communications layer.

6.3 Use cases

What is our program expected to offer to a user? A list of use cases is given
in Figure 6.1. As we can see the user is expected to interact with the program
in order to provide the required data for the Approximate matcher protocol.
In addition he is expected to interact to enable functionality such as start the
key exchange, or start comparing the binary strings (profiles) with the peer.
The interface should try to avoid confusions and prevent illegal combinations of
actions.
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Figure 6.1: The use cases.

6.4 Architectural views

Although this is a small implementation of a protocol we decided to write down
an architectural description of it. That is mainly because parts of this system
are expected to be reused and modified to accomodate for different algorithms,
such as replacing the El-Gamal cryptosystem, and different protocols, i.e., using
the conditional gate for a different protocol than Approximate matcher . For
this to be achieved a written description of the application will help future
implementors get an overview of the application without digging into source
code.

In this section we will make use of the ideas in [16] to present different views of
the design of the software. A brief description of the views that we are going to
use is:

• The conceptual architectural view, which models the application as a col-
lection of decomposable and interconnected conceptual components;
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• The module architectural view, which captures the concurrency and syn-
chronization aspects of the design.

We skip the Execution view which is obvious in our design. The use cases of the
software will also be discussed to show the correspondence between the views
and make the design decisions clear.

In the following subsections we will discuss the architectural design of the Ap-
proximate matcher application in parallel with the rationale that lead to this
design decisions. More thoughts on the rationale and decisions will be discussed
in Section 7.1.

6.4.1 Conceptual Architecture view

In this view we see the application as an entity composed by different compo-
nents that are assigned different tasks. We will not focus into details but rather
give a brief overview of the architecture.

Figure 6.2: A high-level configuration of the Approximate matcher application.
The boxes represent components and the lines interaction between them.

Initially we define the following components (see Figure 6.2) of the application:

• Secure Computations component;

• PRNG component;

• Peer interaction component;

• Key Storage;

• Packet Encoder component.

These are also the key aspects of the application. We need some user input to
set the data for the Approximate matcher , set the address of the peer and view
the peers that a key exchange with them has already occurred.

A refined version of the application is shown in Figure 6.3. In that figure it
should be clear that concepts are described and not actual classes or instantiated
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Figure 6.3: An initial high-level configuration of the Approximate matcher Ap-
plication. The boxes represent components of the system and the lines correspond
to interaction points. Colored lines have been used to make interactions distinct
and serve no other purpose.

objects. Each concept may not directly correspond to a class. The mapping
will be described in the Module Architectural view section.
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The Secure Computations component

The Secure Computations component is the main element of the application. It
contains the components that implement the Approximate matcher protocol.
The The component named Protocol is used to gather the required data set
by the user interface, perform an initial handshaking with the peer and check
whether a key exists using the Key Storage component. Based on the initial
negotiation it starts the Approximate matcher protocol or initiates a key ex-
change.

The Profile matcher component takes control once the Protocol has setup the
parameters for the connection (such as key exchange and user input). It’s pur-
pose is to make the internal calculations for the Approximate matcher protocol.
It is connected to the Conditional Gates which is responsible for making the
computations with the peers, thus needs to use the Communications component.

The Cryptosystem key generation is used by the Protocol to generate a shared key
with the peer if this doesn’t already exist. It makes use of the Communications
component to interact with the peer.

The PRNG component

The PRNG component is responsible to generate random numbers that are re-
quired by other components. It is intended to run in parallel with the other
components in order to be able to do precomputations of the random numbers.
This will allow faster delivery of the requested numbers.

The Communications component

Finally there is the communications component. It handles the actual transmis-
sion and reception over the network, as well as the packet encoding by using the
Packet encoder component. The Key storage component will store and retrieve
private and public keys corresponding to the cryptosystem.

6.4.2 Module Architecture view

The purpose of this section is to define modules and organize them into layers.
Layers provide independence between parts of the system, so that a change
in the layer doesn’t affect the whole system. Modules can interact with other
modules within the same layer. If interaction is required between layers then
the layer should provide the interface.

An initial mapping of the components into the layers is given in Figure 6.4 and
a mapping of the components into subsystems and modules1 follows in Table
6.1. In the following sections we will expand the components into modules and
subsystems.

1The subsystems are modules in practice, but we want to make clean that they are inde-
pendently executed, and may even run on different CPUs.
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Component Module
Random Number Generator PRNG Subsystem
Key Storage KeyStorage Module
Profile Matcher (protocol) ProfileMatcher Subsystem
Protocol Protocol Module
Cryptosystem Key Generation CryptoSystemKeyGeneration Module
Profile Matcher (algorithms) ConditionalGateCalculator Module
Packet Encoder PacketEncoder Module
Communications Communications Module

Table 6.1: Mappings of components to modules.

The main idea is to separate functionality into independent layers so usage can
be restricted to public interfaces. We also focus on the algorithmic aspect of
the design so we will keep out the description of the interaction with the user
interface. The detailed diagram with the layers is shown in Figure 6.5 and the
interdependencies between them can be seen in Figure 6.4.

The interfaces of the Approximate matcher application are described and ex-
plained in [24].

Protocol layer

To accommodate the Approximate matcher protocol we create the Protocol.
It contains the Profile Matcher subsystem and the Protocol Module. The
Protocol module is responsible for the initial setup of parameters with the
peer, the key generation, if needed, and the initiation of the Approximate
matcher . It relies on the ProfileMatcher module, the KeyStorage and the
Communications modules using their layer interfaces.

The ProfileMatcher subsystem consists of the ProfileMatcher, Adder, XOR
and Comparator modules that implement the actual algorithms. They all de-
pend on the Algorithms Layer for the Conditional gates calculations.

Algorithms layer

The Algorithms layer holds the crypto functionality including the Conditional
Gates and the cryptographic protocols. Those are split into the CryptoSystem
KeyGeneration, CryptoSystemComputations and the ConditionalGatesCalculator
modules. All of these modules depend on the functionality provided by the
PRNG layer and both the CryptoSystemKeyGeneration and ConditionalGatesCalculator
depend on the interface of the BackEnd layer to access the communication chan-
nel.

PRNG layer

This layer consists only of the PRNG module that provides access to random
numbers. It is to be executed in a separate thread than the main application
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in order to be able to perform precomputations needed by the underlying cryp-
tographic protocols. The name PRNG was chosen because that functionality
need not to be known by the other modules that make use of it, thus they can
just consider it as a random number provider.

Key Storage layer

This layer with the KeyStorage provides the functionality to access past keys
exchanged with a peer, and store new ones.

Communications layer

This layer provides access to the system level functionality of Networking to the
upper layers.

Figure 6.4: An initial creation of layers based on the components of the con-
ceptual view.
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Figure 6.5: The Layers with the modules and subsystems.
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Chapter 7

Implementation issues

In the following sections of this chapter, we give an overview of the most im-
portant design decisions and the rationale behind them. In addition in Section
7.2 we describe the communication protocols involved.

7.1 Modules and subsystems

7.1.1 Random Number Generator

This protocol like most of the cryptographic protocols assume a random source
capable to provide a quite large amount of random numbers. However this is
not trivial in modern operating systems. Different systems provide different
interfaces with different semantics to provide random bytes. For example the
Win32 API provides a system call CryptGenRandom to generate random bytes,
that depends on a cryptographic provider context (for no obvious reason). How-
ever nothing about the details of this generator are explained in the function’s
description [5] except for

This function is often used to generate random initialization vectors
and salt values.

which does not offer a warm feeling. Other operating systems such as Linux
and FreeBSD provide special files in the operating system such as /dev/random
and /dev/urandom to offer random bytes. Even though in both of them these
files are linked with an entropy gatherer within the kernel, that times hardware
interrupts, network usage etc., the interface is still non uniform. For example
Linux’s /dev/random[14] blocks when it thinks that the entropy within the
kernel is not enough, whilst FreeBSD’s /dev/random[26] does not have this
limitation. There are several discussions on which behavior is better (see links
from [3]) and both sides seem to be passionate enough[4].

The bottom line is that random bytes are not easy to obtain, and even if some-
body obtains them there is no assurance on the randomness. One can only
be assured on the way they are produced. Relying on the entropy counters,
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such as the ones in the Linux kernel, does not provide assurance too[14]. The
FreeBSD’s approach and the approach in [3] seem to be the most promising
since they utilize algorithms such as [17] and [29, Fortuna] that are designed to
cope with low entropy pools and even with input to the PRNG that comes from
malicious attackers.

Our implementation is expected to function on the Windows platform thus we
will not use anything else except the Win32 API for the PRNG and ignore the
fact that we know nothing about it. This decision should be reconsidered for
a real world implementation. On the GNU/Linux system we make use of the
/dev/urandom device.

Parallel generation

To implement the optimizations based on precomputations a way to parallelize
the random number generator was required. For this we designed an inter-
face to access random numbers in the specific forms described in Section 4.2.2.
That way the precomputations component was only visible within the random
generator back end. The callers had no idea whether it was used or not.

We used a low priority worker thread to compute random numbers in the re-
quired forms while the protocol was executing. Thus we were effectively using
the idle time of the CPU and the time of the I/O for the precomputations. The
average size of the cache for the precomputed numbers was made configurable,
although different types of numbers had different size of cache based on their
usage ratio1. When the generator was asked for a number but didn’t have any
in the cache, it was generating one on the fly in the high priority thread.

7.1.2 Profile Matcher (algorithms)

Side-channel attacks

Although not part of this study, we believe it is important to give some hints
about the possibility of side-channel attacks in the involved protocols. That is
because even if the protocols used are proved not to leak any other information
that the output, this is done using models that do not consider other attacks
except the ones possible in the model. In the following paragraphs we list
briefly some first observations on the possibility of side channel attacks, and
most specifically timing attacks, which are important due to the interactive
nature of this protocol2.

As it can be seen in Section 2.3.2 because of the El-Gamal encryption all the
operations between encrypted data are independent of the plaintext value. This
prevents side channel attacks that observe the timing of operations.

However operations that involve unencrypted values such as the addition and
multiplication with elements in Zq take up time that is affected by the input’s

1which based on the calculations in Section 5.2, verified by measurements.
2One can easily detect when the calculations were finished by checking the time the next

reply was sent.
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value. Thus this may be a point to be investigated for a real world implemen-
tation.

The conditional gate operation (Section 2.5) in the blinding step, where a multi-
plication with a value from the {1,−1} range is required, care must be taken not
to provide any information of this value. That is because a multiplication with
1 is a no-op, whilst a multiplication with −1 requires an inversion. A way might
be to perform a multiplication with −1, if this wasn’t the selected number, and
discard the output.

Moreover while testing the output of a decryption of a homomorphic encrypted
value, care must be taken not to leak the result by spending more time in some
results than others.

7.1.3 Profile Matcher (protocol)

Conditional Gate Worker

The Approximate matcher protocol involves subprotocols that depend on several
calculations on El-Gamal encrypted values. All of the calculations except for
the Conditional Gate can be easily performed without any interaction between
the calculating parties. The Conditional Gate on the other hand needs (for two
parties) a two round message exchange involving 1 exchange per round. Instead
of executing each gate separately we implement the optimizations discussed in
Section 4.2. That is the Parallel initiation and the Combining outputs. That
way, since the Approximate matcher involves a large number of Conditional
Gates, we keep the message exchange to the minimum possible.

The component that handles the calculations for conditional gates is called
ConditionalGateWorker and is intended to be used as depicted in Figure 7.1.
It is initially filled in with a number of gates and as soon as no more gates are
expected it starts executing them as shown in Figure 7.2.

Figure 7.1: Conditional Gate worker: Adding gates. Each component of the
Approximate matcher can add gates to the worker.

XOR phase In the XOR phase all the conditional gates that need to be
calculated do not depend on previous steps outputs of the algorithm (see Section
3.1). Thus all the gates are fed directly to a ConditionalGateWorker.

Addition phase The Addition phase is more complex, because we have a
multi-level algorithm where the Conditional Gates involved depend on the out-
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Figure 7.2: Conditional Gate worker: Execution. The Workers correspond to
two different parties, and each one begins by calculating a different subset of the
available gates. This is the implementation of the parallel initiation optimization.

puts of previous levels. However as we saw in Figure 3.2 a level of parallelism
in the addition algorithm can be achieved. Our design is depicted in Figure
7.3. It depends on executing each addition on a different thread. These threads
use a single ConditionalGateWorker to compute the Conditional Gates. That
way the Conditional Gate messages of each addition thread are combined with
the other threads’. In addition if the number of gates computed is 2 or more,
parallel initiation is used.

Timing

The timing requirements for the protocol were the following:

• precise timing of the Approximate matcher protocol;
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Figure 7.3: Approximate matcher : Adder. Each box represents a different
execution thread. The boxes on the same level are executed in parallel.

• calculation of the idle time during protocol execution.

To do precise timing in the Win32 platform we used the high-resolution time
function timeGetTime, which allows for up to 10 milliseconds accuracy. In
GNU/Linux system we used the clock gettime API function that is available
in all POSIX compliant systems. This has accuracy that depends on the CPU
frequency but for our purposes we restricted timing to millisecond precision.

Calculating the idle time of the protocol was done as described below. When
no precomputations thread was available the idle time was estimated by count-
ing the time the application spent waiting input through the network. When
a precomputations thread was present the idle time was again estimated by
counting the network waiting time if the precomputations thread was idle, i.e.
no calculations were done.
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7.1.4 Cryptosystem Key Generation

Big number operations

For the cryptosystem to be implemented, as we described it, a way to perform
operations with big numbers is required. In our case big is defined to be numbers
of size 1024-6894 bits. Since most CPUs are limited to 32 or 64-bits operations
the native data types cannot be used. Fortunately there are several libraries (or
packages) that we can use. Those are

• GMP: The GNU Multiple Precision Arithmetic Library[13], which is a free
library for arbitrary precision arithmetic, operating on signed integers,
rational numbers, and floating point numbers. According to their web site
the main target applications for GMP are cryptography applications and
research, Internet security applications, algebra systems, computational
algebra research, etc.

• libtommath: LibTomMath[6] provides highly optimized and portable rou-
tines for a vast majority of integer based number theoretic applications.

• libgcrypt: This is a general purpose cryptographic library based on code
from GnuPG. It includes a hardened version of the GMP library.

• OpenSSL: This is a general purpose cryptographic toolkit.

• and more . . .

There are quite numerous possibilities, so which one to select? If we think about
performance then GMP outperforms any of the other options, but this is a library
that was never intended to be used in real world security applications. A careful
study of its source code reveals code vulnerable to denial of service. A typical
example is that GMP will call exit() if it cannot allocate space for a number,
leading to easily exploited denial of service attacks.

Libgcrypt did modify the GMP code in a way to be used in security applications
and thus it gets the benefits of the speed issue. A drawback is the fact that it is
based on old code of GMP. Libtommath was also specifically designed for security
applications and is a well-written library with a clean interface. It is highly
portable since it was written in C with no assembler optimizations , but this of
course comes at a performance cost. The OpenSSL library contains big number
operations as part of the toolkit but it also does not achieve the performance of
GMP.

For our application the GMP library was selected, mainly because the author was
familiar with libgcrypt which has almost the same API and porting GMP to
Win32 platform was easy.

El-Gamal key generation

The El-Gamal cryptosystem requires the generation of a multiplicative group
and a prime order subgroup. We use an algorithm, similar to the one described in
[22] optimized for our needs, to generate a prime number of the form p = 2qw+1,
where q is also prime. The reasons behind the choice of this special form will be
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Generate p = 2qw + 1, where p and q have size l(p) and l(q)
respectively.

1. Generate a prime q of size l(q)
2. Generate a random odd number w of size l(p)− l(q) and test

if p = 2qw + 1 is prime. If not repeat this step.

Having generated the prime p we find a generator of a subgroup
of order q.

1. Generate a random number r in the group
2. Calculate c = r

p−1
q = r2w

3. If c = 1 return to the first step. Otherwise the generator is
c.

Figure 7.4: Prime order group and subgroup generation

given below. Then we find a generator of order q using the algorithm described
in [33, Finding a generator for Z∗p].

Our algorithm for group generation is shown in detail in Figure 7.4. The prime
number generation is done by generating random odd numbers and testing them
for primality using the Miller-Rabin algorithm (see [25]).

The reason for the choice of a prime of the form p = 2qw + 1 is to make known
attacks against the discrete logarithm problem (see [25, The discrete logarithm
problem]) difficult to mount. That is because the multiplicative group generated
by the prime p has order p − 1 = 2qw that includes q as a factor. This means
that p will resist the attacks described in [38] and [25], if the size of q is big
enough. How “big enough” is, is discussed in the next paragraphs.

Security levels

While implementing the threshold El-Gamal cryptosystem we faced the problem
of determining the length of generated parameters, such as the group’s size and
the order of the subgroup, as well as the cryptographic primitives to be used such
as the hash function. We wanted our implementation to use algorithms with
similar security properties, that is, have no weak link in the implementation.
For this reason we used the definition of security levels found in [8].

The security level is defined as the amount of work required to break an algo-
rithm measured in steps. For example to brute force an 128 bits AES key 2128

steps are required. The amount of CPU instructions that each step requires
is not important for the algorithms we use. The difference between a million
instructions and a single one does not practically affect the computational effort
needed in the magnitude of numbers we are working on.

In [21] estimates for the required parameter sizes for various cryptosystems with
respect to a cost are given3. Furthermore [20] does a comparison of the security

3The authors of this article implicitly suggest that security level should be selected by
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levels for public key algorithms with the levels offered by the AES symmetric
cipher. We summarize their results from [20] for today’s attacks in Table 7.1.

Security level
(in log2(steps))

El-Gamal
Prime p size (in
bits)

Order of gener-
ator g (in bits)

Hash function
output length
(in bits)

72 1024 160 160
128 2644 256 256
192 6897 384 384
256 13840 512 512

Table 7.1: The security levels implemented. The first level doesn’t correspond
to values from the referenced papers but rather commonly used values in today’s
protocols.

7.1.5 Packet Encoder

There are several ways to encode a packet to store or to be transmitted over the
network. Standard bodies usually define ways to do it. The W3 Consortium
defined XML for that purpose, ITU believes ASN.1 [36] should be used and so
on. However if we check random protocols from IETF we can see that in practice
there is no standard way. Very few protocols are defined in XML, such as Jabber,
even fewer in ASN.1, i.e., LDAP, and the majority they just use a custom made
protocol, say SMTP, HTTP and TLS. On the other hand outside IETF several
security protocols, especially the sponsored by RSA Security PKCS standards
are based on ASN.1.

A question that might arise, is whether there is a need for a standardized way of
encoding messages and structures. We don’t think there is a definite answer to
this question since even today where ASN.1 and XML are mature, new protocols
avoid using them. Maybe there isn’t. However there are some advantages from
using a standardized way. These are

• It is easier to describe the protocol to somebody familiar with the stan-
dard. For example in ASN.1 you can simply say encode this integer in
the packet structure below using the DER encoding rules, and everybody
familiar with the standard will understand what to do.

packet ::= SEQUENCE {
x INTEGER,
y INTEGER

}

• The encoding is automated using available tools. For example for the
DER encoding rules of ASN.1 one can find tools such as the one described
in [10], or for XML the libxml, which allow for automated encoding and

letting the user specify a cost, for example, the year until when he’d like his data to be secure.
We consider it a very good approach to specify the sizes of the security parameters, especially
given the current common approaches that let the user decide which algorithms and key sizes
to use.
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decoding with few source code lines. For custom made protocols there are
no such tools (we couldn’t find a tool to encode TLS packets).

For our implementation we will use the ASN.1 language to specify the packet
structures and the DER encoding rules to perform the encoding. That design
decision was arbitrary although influenced by the fact that several security pro-
tocols already use it, such as the PKIX and PKCS standards.

7.1.6 Communications

During the conditional gate study we assumed, for the communication complex-
ity calculations, that there is a way for individual peers to communicate using
a broadcast method. With the traditional peer to peer communication models
this is not possible without having a central server, or having individual hosts
forward packets. In both cases this is clearly inefficient since the communication
complexity increases due to retransmissions. A way to overcome this is to use
the broadcast feature of IP version 4, which seems to offer the required function-
ality. However this prevents parties from remote networks from communicating
since broadcasted packets cannot be transmitted outside a local network area
and moreover broadcast is not supported by the new IPv6.

The most suited solution seems to be the multicast[35, Multicasting] feature
of the IP protocol. Multicasting allows a targeted broadcast between parties
over the network. Each party must volunteer and join the multicast network
to be able to receive the transmitted packets. Thus our initial assumption is
fullfilled. However multicast links are unreliable by design4 and require protocols
to announce sessions such as [15]. Reliable extensions for multicast links, such
as [1] and [7], have been proposed, although complete implementations of these
protocols are not yet available.

For this reason and moreover because we focus on two-party computations our
implementation uses a peer to peer TCP/IP connection, which is sufficient for
our purposes. The networking API we are going to use is the Berkeley Sockets
API which is available in all POSIX compliant operating systems including
Win32.

7.1.7 User interface

For the purposes of the user interface of the application we considered using a
graphical interface. The choices we had were

• Microsoft Foundation Classes: The “native” way of creating windows
in the Win32 platform;

• GTK+ and GTK-: A user interface that is widely used in GNU/Linux ap-
plications and is the basis of the GNOME window environment, mostly
used by C and C++ applications;

4They depend on UDP message delivery.
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• QT: The basis of the KDE window environment, based on an extended
version of C++;

• WxWidgets: A cross-platform framework for graphical user interface ap-
plications, based on a subset of C++.

All of the above were portable at least on the Win32 and GNU/Linux platforms5.
Our choice was the WxWidgets not only because it is available for our language
of choice (C++), but mainly because it provided a portable Graphical User
Interface and a compatibility layer for each platform that involved Threads,
Semaphores and other operating system depended functionality.

7.2 Communication protocol overview

In this section we will give a way to perform the Profile matching for two parties
over a reliable communication line. The next sections will show how a typical
message exchange between two participants looks like. The exact contents of the
messages are shown in Appendix C as well as the contents of packets intented
for storage purposes.

In the following sections we assume a client-server model, where the client is the
initiator of the connection and the server is the one accepting it. That choice
was made for descriptive purposes only and serves no other purpose since the
protocol is symmetric. The messages we use are either of specific type that are
named and defined accordingly, as well signal messages that contain few bits of
information.

7.2.1 Initial handshake

Here in the initial handshake the client advertises itself to the server. The
participants give a hint to each other so they can check whether they already
share an El-Gamal key pair. Additionally a security level is negotiated and the
server provides the client with all the parameters needed for the Profile matching
protocol, such as the threshold, enabled optimizations etc.

Client Server

ClientHelloPDU −→
←− ServerHelloPDU

IDPDU −→
←− IDPDU

The IDPDU message includes the numerical ID to be used in the subsequent
key exchange and the protocol. It matches any previously established IDs if
connecting to a known user6.

5Even the MFC is available in linux via libwine.
6This might not make much sense in the two party case since each party can store the

other party’s ID, but for n parties a way to map the participants to protocol IDs is required.
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If a party doesn’t share a key with the peer they notify the peer with a signal
of type BEGIN KX, otherwise with a signal of type PROCEED PROTO. In the case
both signals from the peers are of type PROCEED PROTO they proceed to the main
protocol. Otherwise the move on with a fresh key generation. An exchange of
messages, where the Client side has a key stored, but the Server side doesn’t
(may have been deleted for some reason) would be

Client Server

SignalPDU(PROCEED PROTO) −→
←− SignalPDU(BEGIN KX)

7.2.2 El-Gamal key generation

The message exchange for the El-Gamal key generation follows the general case
algorithm from Section 2.4.1. The mapping to messages is straightforward, ex-
cept for the ElGamalGroupParameters which is a message sent by the client that
contains El-Gamal group parameters that correspond to the selected security
level. Those parameters are generated by the client.

Client Server

ElGamalGroupParameters −→

ThresholdElGamalGenerationCommitment −→
←− Threshold. . . Commitment

ThresholdElGamalGenerationShare −→
←− Threshold. . . Share

SignalPDU(DONE) −→
←− SignalPDU(DONE)

7.2.3 Conditional Gate

The following message exchange is to allow calculations of conditional gates.
This is directly based on the Conditional Gate worker (see Section 7.1.3). The
number of exchanged messages is 4 and this is the minimum number of messages
needed to evaluate a conditional gate work for two parties (see Section 2.5). In
those exchanged messages the output of many conditional gates are combined
together distinguished by an ID number7. This combination of many condi-
tional gates into four messages is the implementation of the Round reducing
optimization (see Section 4.2.3).

7That number is calculated based on the position of the protocol the conditional gate was
run, thus is the same for both peers.
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Client Server

ConditionalGatesBunchPDU1 −→
←− ConditionalGatesBunchPDU1

ConditionalGatesBunchPDU2 −→
←− ConditionalGatesBunchPDU2

7.2.4 Profile Matcher

Here a run of the Profile matching protocol is displayed. The protocol is split
into steps, the XOR, the addition, the comparison and the final decryption
step. On each step several conditional gate messages are exchanged. Each step
is terminated using a signal of type DONE. The final step is terminated with a
signal of type BYE. After this message is exchanged each party should be able
to calculate the output of the profile matching algorithm.

Client Server

BigStringPDU −→
←− BitStringPDU

Conditional gates
for XOR step

...
SignalPDU(DONE) −→

←− SignalPDU(DONE)

Conditional gates
for Addition step

...
SignalPDU(DONE) −→

←− SignalPDU(DONE)

Conditional gates
for Comparison step

...
SignalPDU(DONE) −→

←− SignalPDU(DONE)

ThresholdElGamalDecryptionShare −→
←− Threshold. . . Share

SignalPDU(BYE) −→
←− SignalPDU(BYE)



Chapter 8

Results

After having discussed the protocols and their implementation, it is interesting
to compare and see the effect of the optimizations discussed in previous chapters.
This is the purpose of this chapter. In the first section, we give a brief description
of the test tool that was developed. The measurements taken using that tool and
some discussion are given in Section 8.2. The final part, Section 8.3, summarizes
the advantages and disadvantages of this specific protocol, as well as for the
selected set of algorithms.

8.1 Deliverables

The delivered application is a test tool implemented by following the architecture
and design discussed in the previous chapters. It is a 10000-lines application
that fulfills the requirements and can handle the use cases set in Section 6.3.
Except for the Approximate matcher protocol, it implements the two variants
of it (see Section 3.4) and the following optimizations:

• Parallel initiation;

• Precomputations;

• Combining outputs.

The user interface was designed in a way to allow enabling and disabling various
optimizations, plus giving controls to internals of the implementation such as the
cache size and the priority of the precomputations thread. Due to the selection
of the interface back-end the application could be compiled and executed on the
GNU/Linux as well as the Win32 platforms, although extensive testing was only
performed on the Win32 platform.

A screenshot of the Win32 user interface is shown in Figure 8.1 and a screenshot
from the interface in GNU/Linux is in Figure 8.2.

67



68 CHAPTER 8. RESULTS

Figure 8.1: The application’s user interface. The log messages correspond to a
successful protocol run.

Figure 8.2: The application’s user interface on GNU/Linux using the GTK
widgets.
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8.2 Results

In the following paragraphs we discuss the performance of the optimizations
compared to an unoptimized, naive implementation, the performance of the
protocol across different kinds of networks and its scalability over various com-
plexities. At the end we discuss about the accuracy of the values measured with
the implementation.

In all measurements, unless stated otherwise the security parameter is fixed to a
1024 bit El-Gamal group, with exponent size of 160 bits. This is the commonly
used today security level (see Section 7.1.4).

8.2.1 Performance of the protocol

To give an overview of the protocol’s running time we summarize in Table 8.1
the running time for various bitstring sizes when all optimizations are enabled.

bitstring size
in bits

total time

16 18 sec
32 29 sec
64 48 sec
128 85 sec
256 2, 5 min
512 5 min
1024 9, 5 min

Table 8.1: In this table we give an overview for the amount of time spent in the
protocol when all optimizations are enabled.

More details about the running time and improvements are given in the next
sections.

8.2.2 Performance of optimizations

In this section we are going to give a comparison of the performance of a naive
implementation of the protocol, without any optimizations applied, versus the
optimized versions. When feasible we also give the expected, from the models
developed in the previous chapters, values for comparison.

For the measurements, the test program was run on two similar computers, one
being an Intel Pentium 4, 2.00GHz and the other of the same type in 2.40GHz1.
Both systems were connected in the same 100 MBit ethernet switch which was
used for the communication.

It should be noted that the combining outputs optimization (see Section 5.3) is
always applied, due to the design of our implementation.

1They had a speed difference in modular exponentiations of about 15%, and for this reason
the measurements were done on the slowest of the two.
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To give the comparison between optimizations we run the protocol with the
same input, the same threshold and the same priority and cache for the random
number generator. The tests were performed using varying bit string lengths.
The raw output values of these tests are listed in Table 8.2 on page 76. On
several occasions the performance across different security levels was tested.

In the tests, the following values were measured:

• Total time of execution;

• Idle time;

• Communication time;2

• Amount of data transferred;

• Messages exchanged;

• Amount of random data requested;

• Number of modular exponentiations;

• Time spent in modular exponentiations.

Figure 8.3: The distribution of time spent in the protocol when no optimizations
are applied. The data are shown for various bit string sizes, and fixed El-Gamal
group parameters.

Optimizations

We can see from Table 8.2 and Figure 8.3, that the idle time3 of the protocol
accounts for more than 40% of the total execution time when no optimizations

2This number proved to be of little significance, since it heavily depends on the OS’ internal
caches. We observed several times that the amount of time needed for the send() system call
to return from sending large amounts of data, could be less than sending fewer data.

3See Section 7.1.3 for how idle time is defined and calculated.
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are applied. This percentage is fixed and doesn’t depend on the size of the bit
strings. Thus we see that there is plenty of space for improvement.

In the next paragraphs we discuss the effect of each optimization that was
implemented.

Parallel initiation Parallel initiation as expected reduces the idle time to
over 90% for the bit strings of size larger than 256 bits. That leads to an equal
in length reduce in total execution time, which is more than 40% less than the
unoptimized case. We summarize the decrease in time in the Table 8.3.

In small bitstrings, where the communication time occupies a non-negligible
amount of time, the decrease of the idle time can be as low as 50%. This is
because of the fact that part of one party’s communication time is the other
party’s idle time. However as bitstring sizes increase and the communication
time becomes insignificant, our implementation gets closer to the calculated in
Equation (5.1), limit in time complexity, which is a reduce of 50% for the 2-party
case.

This optimization’s effects are visible when comparing Figure 8.3 with figure
Figure 8.4. There the reduction in idle time is clearly visible.

Figure 8.4: The distribution of time spent in the protocol when parallel ini-
tiation is enabled. The data are shown for various bit string sizes, and fixed
El-Gamal group parameters.

Precomputations As was discussed in Section 7.1.1, in our implementation
the precomputations optimization was implemented in way that it starts on a
lower priority thread, at the time of the protocol initiation. That effectively
means that we had a parallel random generator utilizing the CPU’s idle time.
The effect of this generator can be seen in Figure 8.5. The idle time is reduced,
and the effect becomes more visible when the bitstring sizes increase.
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The cache size used by default by the random generator, was the same as the size
of the bitstring. For rationale see Section 5.2. This size proved to be effective,
at the cost of a linear increase in the memory usage of the generator, depending
on the size of the bitstrings.

As we can see from Table 8.4 although precomputations manage to reduce idle
time the level of optimization is not of the same order as parallel initiation. This
is of course expected since the precomputations improve only a small fraction of
the total computational load, thus the bottleneck of waiting the peer to finish
the computations still remains, although reduced.

Figure 8.5: The distribution of time spent in the protocol when precomputations
are enabled. The data are shown for various bit string sizes, and fixed El-Gamal
group parameters.

Combining outputs It is interesting to see the effect of this optimization.
From the Approximate matcher ’s round complexity discussion (see Section 3.3.4)
we would expect the number of messages exchanged4 to be linear to the number
of bits of the bit strings. However because this optimization is used we can
see in Figure 8.6 that our expectation for logarithmic growth (see Section 5.3)
is correct. In Table 8.5 we list the actual messages exchanged in the protocol
compared to the expected message complexity.

The expected message complexity was calculated based on the round complexity
formula in Section 3.3.4, by replacing the factor n + 1 that depends on the
number of players with the number 2 + 2 = 4, because we only have 2 parties
and El-Gamal decryption uses two messages even though they are in a single
round. Thus we calculated the message complexity as

4(log2
2 m + log2(m + 1))

We can see that our calculations match the number of messages exchanged,
except for a difference of 16 messages. Those are messages used by the commu-
nication protocol, for signaling and termination of the protocol. We can also see

4In the two party case the number of messages exchange and the round complexity are
analogous.
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the difference in the number of messages when parallel initiation is enabled5.
The scaling of the number of messages is visible in Figure 8.6.

A comparison with the expected number of messages without this optimization
is given in Figure 8.7. That expected number was calculated as above based on
the results of Section 3.3.4.

Figure 8.6: The number of messages exchanged in the protocol. We can see the
increase in the number of messages due to parallel initiation.

Figure 8.7: The number of messages exchanged in the protocol compared with
the expected number of messages without the combining outputs optimization.

5When parallel initiation is used the amount of messages exchanged increases by a fac-
tor that is less than 2 (the number of players). See also the discussion about combining
optimizations in Section 5.4.
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Combining optimizations As we already saw with Combining outputs and
Parallel initiation, combining optimizations will not give the sum of the in-
dividual improvements. This is visible in our case where the combination of
parallel initiation and precomputations optimizations, on average reduces the
total time of execution at about 4-5% more than parallel initiation alone. The
level of reduce in total time is shown in Table 8.6.

The main reason for this is that the amount of idle time was reduced due to
parallel initiations, thus less time was available for precomputations. More
reasoning is given in Section 5.4. The total and idle time improvement for
bitstrings of size 1024 when those optimizations are applied is shown in Figure
8.9. The time distribution is shown in Figure 8.8.

Figure 8.8: The distribution of time spent in the protocol when both parallel
initiation and precomputations are enabled. The data are shown for various bit
string sizes, and fixed El-Gamal group parameters.

Time distribution Another interesting figure to see is the effect of optimiza-
tions in the time distribution across the three phases of the protocol (XOR,
Addition and Comparison). For bitstrings of size 256, the distribution is shown
in Table 8.7 and visualized at Figure 8.10.

We can see in that figure that, as expected, the XOR and Addition steps have the
largest contribution to total time, whilst the comparison step has a very small
contribution. That is because the input to the XOR step is only a fraction of
the input to the XOR and the addition steps.

In addition, it is visible that parallel initiation changes the balance and the cal-
culations for the comparison step have increased their percentage in the total
time. That is something expected since the comparison phase has only sequen-
tial calculations of conditional gates, while both XOR and addition steps can be
parallelized. Thus the latter steps take advantage of the parallel initiation whilst
the comparison step is still having the same execution time, and so increased
its percentage.
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Figure 8.9: The total and idle time spent in the protocol when both parallel
initiation and precomputations are enabled. The data are shown for bit strings
of size 1024, and fixed El-Gamal group parameters.

The precomputations optimization affects the same way all three steps thus, as
expected, no dramatic change in the time ratio occurred6.

Figure 8.10: The time distribution between different phases of the protocol for
different optimizations.

6Except maybe for the XOR step, which is the first to start, thus less time is available for
precomputations.
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bit
string
size

total
time

idle
time

commu-
nica-
tion
time

data
trans-
ferred

mess-
ages

random
data

modular
expo-
nentia-
tions

time in
expo-
nentia-
tions

No optimizations
16 26565 11528 5310 123 96 13 2795 7423
32 45674 19246 7028 258 136 24 5868 15896
64 79572 33142 8380 530 184 46 12061 32509
128 145556 61395 9855 1076 240 90 24494 65872
256 268476 111352 11559 2173 304 179 49407 132749
512 516220 214156 12741 4365 376 358 99280 268909
1024 1003863 419488 14512 8753 456 714 199073 535229
Parallel initiation
16 19827 5798 4245 123 136 13 2795 7494
32 31191 6940 5049 258 204 24 5868 15593
64 51712 7972 5989 530 288 46 12061 32459
128 91039 9749 6763 1076 388 90 24494 66477
256 166078 12003 7664 2173 504 179 49407 134374
512 309422 13925 9583 4365 636 358 99280 264821
1024 588125 18163 10813 8753 784 714 199073 525220
Precomputations
16 24172 8235 6719 123 96 13 2877
32 39812 11704 8580 258 136 24 6129
64 67265 17419 10485 530 184 46 12322
128 116703 20939 12452 1076 240 90 24757
256 211750 30946 14590 2173 304 179 49669
512 395172 51964 16171 4365 376 358 99544
1024 758078 72268 18048 8753 456 714 211214
All optimizations
16 18375 5421 5061 123 136 13 2877
32 29313 6266 6248 258 204 24 6142
64 48781 7151 7548 530 288 46 12719
128 85203 7295 8389 1077 388 90 25290
256 155531 6579 9047 2173 504 179 52369
512 294328 3157 10026 4367 636 358 105315
1024 571266 0 11127 8754 784 714 204890

Table 8.2: The performance of the Approximate matcher for various bit string
sizes. The time unit is milliseconds and the data unit is kilobytes (1kb=1000
bytes). The time spent in exponentiations was not measured when precomputa-
tions were enabled, because of practical problems arising from the multi-threaded
architecture.
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Bit string
size

Idle time
percent-
age

Decrease
in idle
time

Decrease
in total
time

16 43% 49% 25%
32 42% 64% 32%
64 42% 75% 35%
128 41% 84% 37%
256 41% 89% 38%
512 41% 93% 40%
1024 42% 96% 41%

Table 8.3: The decrease in total and idle time of the protocol when parallel
initiation is used.

Bit string
size

Idle time
percent-
age

Decrease
in idle
time

Decrease
in total
time

16 43% 29% 9%
32 42% 39% 13%
64 42% 47% 15%
128 41% 66% 20%
256 41% 72% 21%
512 41% 76% 23%
1024 42% 83% 24%

Table 8.4: The decrease in total and idle time of the protocol when precompu-
tations are used.

Bit string
size

Messages ex-
changed with
parallel initiation

Messages ex-
changed without
parallel initiation

Expected mes-
sage complexity
(without parallel
initiation)

16 136 96 80
32 204 136 120
64 288 184 168
128 388 240 224
256 504 304 288
512 636 376 360
1024 784 456 440

Table 8.5: The number of messages exchanged in the protocol.
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Bit string
size

Idle time
percent-
age

Decrease
in idle
time

Decrease
in total
time

16 43% 52% 30%
32 42% 67% 36%
64 42% 78% 37%
128 41% 88% 41%
256 41% 94% 42%
512 41% 99% 43%
1024 42% 100% 43%

Table 8.6: The decrease in total time of the protocol when all optimizations
are applied. What is impressive is the fact that with the precomputations op-
timization helped reduce the total time by a factor that is more than the idle
time.

XOR Addition Comparison
No optimizations 23% 74% 3%
Parallel initiation 23% 72% 5%
Precomputations 24,5% 72% 3,5%

Both 23% 72% 5%

Table 8.7: The time distribution across different stages of the protocol.
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8.2.3 Performance over various networks

In the previous section we saw how various optimizations affected communi-
cation and round complexity. But examining the round and communication
complexities alone, does not give an accurate image of the expected communi-
cation time. Our test network happened to have low latency (high speed) and
high bandwidth7 (capacity). But how would a protocol like the Approximate
matcher perform on different networks?

In Table 8.8 we can see how latency and bandwidth can affect the protocol
on some types of networking infrastructures. The values in this table were
calculated based on the values of Table 8.2. The calculations for the latency
overhead were done by adding the latency per messages for all the messages
exchanged, and for the capacity overhead by dividing the total number of data
exchanged with the capacity.

Although we will not elaborate, we can clearly see that the main overhead is
caused by communication complexity, both in high (ethernet) and low (modem)
bandwidth links. On the other hand links like a satellite link, which have ex-
tremely high latency are affected by the round complexity severely. But even in
that case we can see that the linear growth of the amount of data to be trans-
ferred, compared to the logarithmic growth of the round complexity, reduces
very fast the contribution of latency in the total communication overhead time.

8.2.4 Performance of the variants

In the description of the Approximate matcher we discussed about possible
variants where the input bitstrings are private or the threshold is encrypted.
In these paragraphs we only summarize the performance of the variants in the
malicious model without discussing any details. Some indicative values can be
seen in Table 8.9 on the next page.

In that table we see that when the Private XOR variant is used the protocol is
about 15% faster. This could be further improved when there is private input
to both parties. In that case they can use parallel initiation to speed up the
XOR phase. As expected when the threshold is encrypted the protocol time
is increased due to the extra conditional gates needed during the comparison
phase.

7A good introduction to these terms can be found in [2].
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bit string
size

time overhead
due to capacity

time overhead
due to latency

contribution
of latency

28800 modem, with 3.6kb/s bandwidth and latency of 100ms
16 34167 13600 28%
32 71667 20400 22%
64 147222 38800 20%
128 299167 50400 14%
256 603611 63600 10%
512 1213056 63600 4%
1024 2431667 78400 3%
10Mbit ethernet, with 1250kb/s bandwidth and latency of 0.3ms
16 98 40.8 29%
32 206 61.2 23%
64 424 86.4 27%
128 861 116.4 22%
256 1738 151.2 8%
512 3494 190.8 5%
1024 7003 235.2 3%
1Mbit satellite, with 125kb/s bandwidth and latency of 500ms
16 984 68000 99%
32 2064 102000 98%
64 4240 144000 97%
128 8616 194000 95%
256 17384 252000 93%
512 34936 318000 90%
1024 70032 392000 84%

Table 8.8: The expected performance of the Approximate matcher in different
types of network infrastructure. The calculations here are based on the data from
Table 8.2. The values of latency and bandwidth of different infrastructures might
not be perfectly accurate.

bit
string
size

Approximate
matcher

Private XOR
Approximate
matcher

Encrypted
threshold
Approximate
matcher

16 18 sec 16, 5 sec 22, 5 sec
32 29 sec 25,5 sec 34,5 sec
64 48 sec 42 sec 55 sec
128 85 sec 71 sec 92,5 sec
256 2, 5 min 2 min 2,7 min

Table 8.9: The performance of the Approximate matcher and variants for several
bitstrings.
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8.2.5 Scalability

An interesting question is how does the protocol scale with the size of the input.
We will mostly focus on the growth in relation to the bit string size, although
the growth due to security parameter increase will also be discussed. The factors
we will examine are

• Computational complexity;

• Randomness complexity;

• Communication complexity;

• Round complexity.

Computational complexity

We can get an idea of the growth of the computational complexity by looking
the values in Table 8.2 and the figures 8.11 and 8.12, which show the total time
growth and the amount of modular exponentiations in relation with the size of
the bit string. As expected (see Section 5.1) the scaling is linear O(m).

Figure 8.11: The total time in relation with the size of the bit strings. The
time unit is milliseconds.

Both of these figures rely on El-Gamal parameters of 1024 bits base and 160 bits
exponent. The scalability of the protocol as a function of the security parameter
(see Section 7.1.4 on page 61) can be seen from the values in Table 8.10 and the
graph in Figure 8.13. The growth factor is of the order of the exponentiation
complexity which is typically O(k3) for k-bit input.

Randomness complexity

In Table 8.2 and Figure 8.14 we can see how the amount of random bytes
request scales with the size of the input. They are linearly dependent as already
indicated by the calculations in Section 3.3.1.
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Figure 8.12: The number of modular exponentiations performed by the Ap-
proximate matcher in relation with the size of the bit strings.

security
level

total
time

idle
time

commu-
nica-
tion
time

data
trans-
ferred

mess-
ages

random
data

modular
expo-
nentia-
tions

time in
expo-
nentia-
tions

72 166078 12003 7664 2173 504 179 49407 134374
128 1325656 38253 4659 4995 504 276 49407 1245688
192 9515187 241076 6409 12159 504 410 49407 9073098

Table 8.10: The performance of the Approximate matcher with parallel initia-
tion for 256 bit strings and varying security levels. The time unit is milliseconds
and the data unit is kilobytes (1kb=1000 bytes).

Communication complexity

Another important factor of the protocol is how the amount of data exchanged
scales with the sizes of the bitstrings to be compared. For a fixed security
parameter, the measurements are shown in Table 8.2 and visualized in Figure
8.15.

As expected from Section 3.3.5 the scaling is linear with the size m of the
bitstrings. However we can see a deviation with the expected values, which is
expected due to the overhead of the communication protocol.

Round complexity

As already discussed above the round complexity is equivalent to the message
complexity, thus Figure 8.6 gives an accurate image of the logarithmic growth
of the round complexity with the size of the bit strings. That complexity is not
affected by any increase in the size of security parameter.
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Figure 8.13: Total time and exponentiation time in relation with the El-Gamal
parameter’s size. In the parameters the first number indicates the base size and
the second the size of the exponent. The time unit is milliseconds.

Figure 8.14: The amount of random data required in relation with the size of
the bit strings. The data unit is one kilobyte and the El-Gamal parameters used
are of 1024 bits size.

8.2.6 About the measurements

Is our implementation optimal? A question that might arise, is whether
the previous results are accurate. That is whether our implementation actu-
ally spends time on the calculations, and the measured times are accurate and
don’t depend on the time spent for the user interface update etc. We will try
to measure effectiveness by checking ratio of the amount of time spent in expo-
nentiations (the most expensive operation in the protocol) to the total time of
the protocol minus the idle and communication times. That would be

(exponentiations time)
(total time)− (idle time)− (communication time)
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Figure 8.15: The amount of data exchanged in relation with the size of the bit
strings. The data unit is one kilobyte, and the El-Gamal parameters used are of
1024 bits size.

This ratio gives the percentage of processing time, spent in exponentiations
when not idle. It would give an accurate indicator on the efficiency of the
implementation. The ratios are shown in Table 8.11 which uses data from the
parallel initiations measurements in Table 8.2.

Bit
string
size

Total time Idle time Communication
time

Exponentiation
time

Ratio

16 19827 5798 4245 7494 0.77
32 31191 6940 5049 15593 0.81
64 51712 7972 5989 32459 0.86
128 91039 9749 6763 66477 0.89
256 166078 12003 7664 134374 0.92
512 309422 13925 9583 264821 0.93
1024 588125 18163 10813 525220 0.94

Table 8.11: The ratio of spent in exponentiations over total time for various bit
string sizes.

Thus we can see that for bitstring sizes of more than 128 the ratio is very close
to being optimal. For the small bitstrings the values shown are not that in-
dicative since our optimality “ratio” only considers exponentiations and ignores
multiplications and other cryptographic operations such as hashing, that could
account for significant time when the total time is low.

The ratio increases even further with the increase of the security parameters as
we can see in Table 8.12.

Thus with those measurements, we can be confident with our results especially
when the size of bitstrings is over 128. An other side effect of these measurements
is that they also justify our decision in the analysis phase to focus on the number
of exponentiations to measure the computational complexity.
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security
level

Total time Idle time Communication
time

Exponentiation
time

Ratio

72 166078 12003 7664 134374 0.92
128 1325656 38253 4659 1245688 0.97
256 9515187 241076 6409 9073098 0.98

Table 8.12: The ratio of spent in exponentiations over total time for different
El-Gamal group sizes and bit string size of 256 bits.
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8.3 Conclusions

On the Approximate matcher protocol

Having seen this implementation of a Approximate matcher protocol and its
performance, we could summarize its strong and weak points. We start with
the strong points.

• Practical although non real-time8;
The time needed to perform the protocol increases with the size of the
input to be compared, and ranges from tens of seconds to several minutes.

• Growth of computations, data transferred and required random numbers
needed is linear with the input;
This growth ensures that the protocol scales well and the amount resources
needed to perform it, will not magnify unreasonably.

• Round complexity growth is logarithmic with the size of input;
The amount of rounds needed for the computations will increase with less
pace than the above complexities.

• No idle time;
We have shown that the protocol can be implemented in a way that no
idle time occurs during the protocol execution.

• All complexities can be calculated in advance;
An other important fact that could be listed as an advantage, is the fact
that all complexities can be calculated in advance, and thus one can have
a good precision of resources needed before the calculations are performed.

But weak points are not of low importance. Those are the following

• The currently used cryptographic algorithms depend heavily on exponen-
tiations;
Although nothing is really wrong about exponentiations, they are an ex-
pensive operation and typical algorithms to perform them have a com-
plexity of O(k3) with the size of their input, which is proportional to the
security parameter selected.

• Not efficient enough for real-time applications;
Although the total execution time is practical and at the order of seconds
and minutes, currently it is not enough for real time applications, unless
powerfull or dedicated CPUs are used.

Other important issues that need not to be ignored

• The amount of random bytes required is high;
Although randomness complexity grows in a linear way, the total amount
of random bytes needed can be quite high. This fact should influence the
decision of selecting a cryptographic PRNG, and use constructions that

8It should be noted that when the malicious model requirement is relaxed to a semi-honest
model (see Section 3.4.3) a 5 times improvement factor in execution time is expected, which
might make the protocol efficient for some real-time applications.
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use algorithms of lower magnitude than exponentiations, so that they
don’t affect seriously the total execution time.

• The underlying networking infrastructure is important;
We saw in previous sections that network latency and bandwidth are im-
portant to the protocol’s performance. We noted that as the input strings
increase bandwidth becomes the deciding factor, whilst for small sizes the
latency is more crucial. Thus in both cases care must be taken when
selecting the infrastructure, with respect to the expected input values.

• Side channel attacks;
Because of the way the protocols used operate it is important for attackers
and participating parties to not be able to distinguish the values used by
the protocol, either the input values or the randomly generated ones. Some
first observations are summarized in Section 7.1.2.

On the optimizations

We have seen in detail that the effect of the Precomputations and Parallel
initiation optimizations has a huge impact in the total running time of the
protocol. However it was shown in the previous section that the combination
of these two offered a small improvement over Parallel initiation alone. Thus
implementations that want to avoid the complexity of parallel threads could
avoid using precomputations at a low performance cost.

The above is valid with the assumption that the Combining outputs optimiza-
tion is always used. Otherwise as it was shown before the rounds will increase
dramatically for large bit string sizes, effectively making all of our previous
measurements and results irrelevant.

With the latter optimization enabled the number of messages exchanged in-
creases logarithmic with the size of the input, which is much lower than the
linear increase of other factors such as computational and communication com-
plexity. Thus effectively reduces the cost of interaction compared to the other
complexities for long bitstrings.
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Chapter 9

Summary

In this case study of the Approximate matcher protocol we have shown that
while the primitives used, such as the conditional gate, are of quite high round
complexity, the combination of these to form a higher level protocol, can keep
the round complexity at acceptable growth levels with the input size. We also
show that the disadvantages of high round complexity can be reversed and used
efficiently for improving the protocol’s performance. That was the idle time,
caused by the need to wait for the other parties to reply and we also used that
time to perform precomputations of values that will be used at later stage of
the protocol.

On the other hand communication complexity proved to be not an unimportant
factor for the performance of the protocol. Because as the input bitstrings
increase in size it grows faster than the number of rounds (linear compared to
logarithmic), it becomes the main factor of the communication delay in common
network links.

With scheduling improvements, such as parallel initiation, and the precompu-
tations during idle time, the computational complexity of the protocol became
the main, if not the only, factor of the time spent in the protocol. But is then
our main goal of minimizing the running time fulfilled? The above fact suggests
for yes. The optimizations that are now expected to improve the running time
are optimizations that affect the protocols’ computational complexity with re-
spect to exponentiations. Thus we believe that this is the direction for future
optimizations of this protocol.
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Appendix A

Acronyms

ASN.1 Abstract Syntax Notation 1 is a standard and flexible notation that
describes data structures for representing, encoding, transmitting, and decoding
data. It provides a set of formal rules for describing the structure of objects
that are independent of machine-specific encoding techniques and is a precise,
formal notation that removes ambiguities.

IETF The Internet Engineering Task Force is an open, all-volunteer stan-
dards organization, with no formal membership or membership requirements.
It develops and promotes Internet standards.

PDU Protocol data unit. This is a common term used to describe communi-
cation protocols.

POSIX This is an acronym of the Portable Operating System Interface. It
is the collective name of a family of related standards specified by the IEEE
to define the application programming interface for software compatible with
variants of the Unix OS. They are formally designated as IEEE 1003 and the
international standard name is ISO/IEC 9945.

PRNG Pseudo Random Number Generator.

TCP/IP The Transmission Control Protocol and Internet Protocol. They
form the most popular reliable Internet communication protocol.

TLS The Transport Layer Security protocol is a protocol standardized by
IETF to provide a secure transport layer to application protocols. Its designed
was based on the Netscape’s Secure Sockets Layer version 3.
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UDP User Datagram Protocol is one of the core protocols of the Internet pro-
tocol suite. Unlike TCP it does not provide reliability nor ordering guarantee.

UML The Unified Modeling Language is an object modeling and specification
language used in software engineering. UML includes a standardized graphical
notation that may be used to create an abstract model of a system: the UML
model.

VSS VSS stands for Verifiable Secret Sharing and is a secret sharing scheme
which is required to withstand active attacks by the participating parties.

XML The Extensible Markup Language (XML) is a W3C-recommended general-
purpose markup language for creating special-purpose markup languages, ca-
pable of describing many different kinds of data. It is a simplified subset of
Standard Generalized Markup Language (SGML).
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El-Gamal threshold key
generation

Special case t = l

When the number of participating parties is the same as the threshold of the
cryptosystem the key generation procedure can be simplified (see [30]). Here
we give a brief description.

Instead of basing the key generation on the Feldman’s VSS scheme we base it
on a simpler scheme that involves no polynomials.

• Each party Pi acting as a dealer generates the random values

xi ∈R Zq

sij , 1 ≤ j ≤ l, j 6= i ∈ Zp

sii = xi −
l∑

i 6=j, 1≤i≤l

sij mod q

• He sends privately to party j the value sij and broadcasts the commit-
ments

B0 = gxi

Bj = gsij , 1 ≤ j ≤ l

• Each party Pj receiving the sij and the commitments verifies the validity
as

gsij

∏
1≤z≤l, z 6=i

Bz = B0
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The secret is then the sum of the individually generated secrets

x =
l∑

i=1

l∑
j=1

sij =
l∑

i=1

xi

Decryption of a value (a, b) = (gr,mhr) can be done by having each party i
calculate and broadcast the value

ri = a−
Pl

j=1 sji

and then multiplying those values together. Thus

m = b

l∏
i=1

ri = ba−
Pl

i=1
Pl

j=1 sij = ba−x

This method has similar properties as the polynomial method (see Section 2.4.1)
and is more efficient in the key generation part. However we make no use of
this method in our implementation, in order to allow easy extension to a real
threshold system, thus we discuss this algorithm no further.
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Data formats

Here we give a description of the transferred and stored data formats used by
the implementation. In order to encode data the ASN.1 DER encoding format is
used. Many of the sequences used here were inspired by the X.509 [37] definitions
of public keys and certificates.

Packet contents and format

Below we give the format of the generic packet used by the communication
protocol. All other packets are embedded in this one in the data field.

MessageType ::= ENUMERATED {
HANDSHAKE (0),
PROTOCOL (1)

}

Packet ::= SEQUENCE {
version INTEGER(0),
type MessageType,
data OCTET STRING

}

Initial Handshake

The messages in the initial handshake are important to establish a relation
with a peer. Identification information is included, initially as strings, such as
clientName and serverName, and after that the protocol specific identification.
This is not included in the initial Hello PDUs since the relation between the
two parties is not known at that point.

ClientHelloPDU ::= SEQUENCE {
version INTEGER(0),
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clientName PrintableString
}

Threshold ::= CHOICE {
plain [0] INTEGER,
encrypted [1] EncryptedBitString

}

ServerHelloPDU ::= SEQUENCE {
version INTEGER(0),
serverName PrintableString,
threshold Threshold,
parallelInitiation BOOLEAN, -- for conditional gates
bitStringLength INTEGER

}

IDPDU ::= ElGamalID

The MessageType for these messages is HANDSHAKE.

Sigma proofs

Since a sigma proof always contains a set of values c and a sequence of r integer
values, it will be represented as

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL

}

SigmaProof ::= SEQUENCE {
algorithm AlgorithmIdentifier, -- the hash algorithm
c SEQUENCE OF INTEGER,
r SEQUENCE OF INTEGER

}

El-Gamal key generation

As described in Section 2.4.1, the following messages are required for an El-
Gamal key generation. For the ThresholdElGamalGenerationShare we com-
bine the broadcasted values B with the value s which is privately sent to a party.
That is because our implementation focuses on the two-party case, thus splitting
these messages seems redundant. However for the n-party case these messages
should be separated.

ElGamalID ::= INTEGER

ElGamalGroupParameters ::= SEQUENCE {
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g INTEGER, -- generator of a (multiplicative) subgroup of order q
q INTEGER, -- the order of the generator
n INTEGER -- the order of the group

}

ThresholdElGamalGenerationCommitment ::= INTEGER

ThresholdElGamalGenerationShare ::= SEQUENCE {
s INTEGER,
B SEQUENCE SIZE(1..MAX) OF INTEGER

}

The MessageType for these messages is PROTOCOL. The format to store El-Gamal
public and private keys is:

ThresholdElGamalPrivateKeyShare ::= SEQUENCE {
groupName PrintableString,
group ElGamalGroupParameters,
memberId ElGamalID,
x INTEGER,
h INTEGER, -- h=g^x
public_h INTEGER

}

ThresholdElGamalPartyPublicKey ::= SEQUENCE {
memberId ElGamalID,
h INTEGER

}

ThresholdElGamalPublicKey ::= SEQUENCE {
groupName PrintableString,
group ElGamalGroupParameters,
h INTEGER,
hi SEQUENCE SIZE(1..MAX) OF ThresholdElGamalPartyPublicKey

}

El-Gamal threshold decryption

This message contains the value d = axi and a proof that d = axi , hi = gxi .

ThresholdElGamalDecryptionShare ::= SEQUENCE {
d INTEGER,
p SigmaProof

}

The MessageType for these messages is PROTOCOL.
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Conditional Gate

During the conditional gate execution the Pi,�si�, [[xi]] and [[yi]] values are
transmitted. These are contained in the following data units.

ElGamalEncryptedValue ::= SEQUENCE {
a INTEGER,
b INTEGER

}

PedersenCommitmentValue ::= INTEGER

ConditionalGateData ::= SEQUENCE {
p SigmaProof,
c PedersenCommitmentValue,
e1 ElGamalEncryptedValue,
e2 ElGamalEncryptedValue

}

ConditionalGatePDU1 ::= SEQUENCE {
id INTEGER, -- gate id
m ConditionalGateData

}

ConditionalGatePDU2 ::= SEQUENCE {
id INTEGER, -- gate id
m ThresholdElGamalDecryptionShare

}

ConditionalGatesBunchPDU1 ::= SEQUENCE SIZE(1..MAX) OF ConditionalGatePDU1

ConditionalGatesBunchPDU2 ::= SEQUENCE SIZE(1..MAX) OF ConditionalGatePDU2

The MessageType for these messages is PROTOCOL.

Profile Matcher

EncryptedBitString ::= SEQUENCE SIZE(1..MAX) OF ElGamalEncryptedValue

BitStringPDU ::= EncryptedBitString

Signalling

For purposes of signal exchanges between the peers the following PDU is used

SignalPDU ::= ENUMERATED {
DONE (0),
BYE (1),
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BEGIN_KX (2)
PROCEED_PROTO (3),
ABORT (4)

}
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Appendix D

El-Gamal parameters and
keys

For the measurements and the testing of the Profile matching protocol we gen-
erated keys for two parties, named Eve and Bob. Those keys are listed in the
paragraphs below.

Eve’s private key

The private key of Eve is listed below and is encoded as a
ThresholdElGamalPrivateKeyShare sequence.

0:d=0 hl=4 l= 585 cons: SEQUENCE
4:d=1 hl=2 l= 7 prim: PRINTABLESTRING :Eve-Bob
13:d=1 hl=4 l= 285 cons: SEQUENCE
17:d=2 hl=3 l= 128 prim: INTEGER :0716B4A1FCE396687 \
4757F3F5CE4A2EDDB3971DC0E5A9BCEB97F1067FC5691D3BBFB60D2A5EEBDE7 \
BE50B4F098E440CB324D1967E0EEAE794FE75366367C81E108C819968FA6D7A \
562A565D1C9AB84E2C3B9C88EED3A07E56576C2F70CFBD33A7FC0684C773C6E \
115A49EC04EA223B0B356025E9C6DA0D423C91D2E652F60D9B

148:d=2 hl=2 l= 21 prim: INTEGER :B262B867327CB3046 \
089389E59E4CA1F1376EBD7

171:d=2 hl=3 l= 128 prim: INTEGER :19EA7D21DCB84ED77 \
DC1E0443261CAC1C34CE1B436D1B24B8C4F1151B4A5D2866D5E89CD357E3066 \
AD09EFD46EBB156BD25393E8831DABB2DCAED77363A8B19881F75839BA96284 \
44D12E6E3D4F4F404008809760AC9B6311305BAA97B67804E66B10CBCA2D88A \
1380D7F3C8B5533CB3DE7C7107D36EE731CB0DB68E7396665F

302:d=1 hl=2 l= 1 prim: INTEGER :02
305:d=1 hl=2 l= 20 prim: INTEGER :16040D1CE8717DD9B7 \
5B4FE2F3AF295B6C0CCF3A

327:d=1 hl=3 l= 128 prim: INTEGER :069168DAD107444394 \
821E09FF67AB3FEE83F5BD77215C3CA912F70AF386BAF44C03BBDDC7214AECA \
64862D8354CC1BAEB8525DC4EF2A24F59D3CE3D12F724D5226AA26094112EB9 \
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A22D1490BEC5ABDEA3DB90546A1B7524790FE47E9F01007D452172AE9BD77F3 \
2675767243CC125A6CC6562D0703D7F966CC3975D2E83F580

458:d=1 hl=3 l= 128 prim: INTEGER :024AEA451554359FB8 \
928A53C133630A6C0D82262E5AAF887227CC1F2667DBEC3F40FF024FB01B7EA \
DDB4E066261F5248A30AD367A2498F2F8327D10E8B5792AD0D5C8341A4BE744 \
B1C189DBA118CBFCF60E8BFB3EC5161F4B83112E20D2F6D41F86A240A498CA0 \
2BB6B8C36CB6119E369A1CB72A21DC22CF0DB0C4C3C1D4264

Bob’s private key

0:d=0 hl=4 l= 585 cons: SEQUENCE
4:d=1 hl=2 l= 7 prim: PRINTABLESTRING :Bob-Eve
13:d=1 hl=4 l= 285 cons: SEQUENCE
17:d=2 hl=3 l= 128 prim: INTEGER :0716B4A1FCE396687 \
4757F3F5CE4A2EDDB3971DC0E5A9BCEB97F1067FC5691D3BBFB60D2A5EEBDE \
7BE50B4F098E440CB324D1967E0EEAE794FE75366367C81E108C819968FA6D \
7A562A565D1C9AB84E2C3B9C88EED3A07E56576C2F70CFBD33A7FC0684C773 \
C6E115A49EC04EA223B0B356025E9C6DA0D423C91D2E652F60D9B

148:d=2 hl=2 l= 21 prim: INTEGER :B262B867327CB3046 \
089389E59E4CA1F1376EBD7

171:d=2 hl=3 l= 128 prim: INTEGER :19EA7D21DCB84ED77 \
DC1E0443261CAC1C34CE1B436D1B24B8C4F1151B4A5D2866D5E89CD357E3066 \
AD09EFD46EBB156BD25393E8831DABB2DCAED77363A8B19881F75839BA96284 \
44D12E6E3D4F4F404008809760AC9B6311305BAA97B67804E66B10CBCA2D88A \
1380D7F3C8B5533CB3DE7C7107D36EE731CB0DB68E7396665F

302:d=1 hl=2 l= 1 prim: INTEGER :01
305:d=1 hl=2 l= 20 prim: INTEGER :0D582CF06F3AD5B980 \
C6696DAE76767DE9B7EC3F

327:d=1 hl=3 l= 128 prim: INTEGER :042C73D09F1720E080 \
F2350FACF96D84BD5BE93CF8999892D9503A8BE63B3B124DD0176BA27669F4D \
A0C1ABCDAA7FB9E0C02BA48F4C4197E7EACFD1102F2AAEC0AE99074F34A74E1 \
1E96D41028BED4CE6AD8842B3AD019FF83C4531002939DFD06C70F81612A1A5 \
6141CF2DCCBC17E1AC5A6E69D7F116C8F95665D4A68D4125A

458:d=1 hl=3 l= 128 prim: INTEGER :024AEA451554359FB8 \
928A53C133630A6C0D82262E5AAF887227CC1F2667DBEC3F40FF024FB01B7EA \
DDB4E066261F5248A30AD367A2498F2F8327D10E8B5792AD0D5C8341A4BE744 \
B1C189DBA118CBFCF60E8BFB3EC5161F4B83112E20D2F6D41F86A240A498CA0 \
2BB6B8C36CB6119E369A1CB72A21DC22CF0DB0C4C3C1D4264

The public key

This is the public key formatted as ThresholdElGamalPublicKey.

0:d=0 hl=4 l= 707 cons: SEQUENCE
4:d=1 hl=2 l= 7 prim: PRINTABLESTRING :Bob-Eve
13:d=1 hl=4 l= 285 cons: SEQUENCE
17:d=2 hl=3 l= 128 prim: INTEGER :0716B4A1FCE396687 \
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4757F3F5CE4A2EDDB3971DC0E5A9BCEB97F1067FC5691D3BBFB60D2A5EEBDE \
7BE50B4F098E440CB324D1967E0EEAE794FE75366367C81E108C819968FA6D \
7A562A565D1C9AB84E2C3B9C88EED3A07E56576C2F70CFBD33A7FC0684C773 \
C6E115A49EC04EA223B0B356025E9C6DA0D423C91D2E652F60D9B

148:d=2 hl=2 l= 21 prim: INTEGER :B262B867327CB3046 \
089389E59E4CA1F1376EBD7

171:d=2 hl=3 l= 128 prim: INTEGER :19EA7D21DCB84ED77 \
DC1E0443261CAC1C34CE1B436D1B24B8C4F1151B4A5D2866D5E89CD357E3066 \
AD09EFD46EBB156BD25393E8831DABB2DCAED77363A8B19881F75839BA96284 \
44D12E6E3D4F4F404008809760AC9B6311305BAA97B67804E66B10CBCA2D88A \
1380D7F3C8B5533CB3DE7C7107D36EE731CB0DB68E7396665F

302:d=1 hl=3 l= 128 prim: INTEGER :024AEA451554359FB8 \
928A53C133630A6C0D82262E5AAF887227CC1F2667DBEC3F40FF024FB01B7EA \
DDB4E066261F5248A30AD367A2498F2F8327D10E8B5792AD0D5C8341A4BE744 \
B1C189DBA118CBFCF60E8BFB3EC5161F4B83112E20D2F6D41F86A240A498CA0 \
2BB6B8C36CB6119E369A1CB72A21DC22CF0DB0C4C3C1D4264

433:d=1 hl=4 l= 274 cons: SEQUENCE
437:d=2 hl=3 l= 134 cons: SEQUENCE
440:d=3 hl=2 l= 1 prim: INTEGER :01
443:d=3 hl=3 l= 128 prim: INTEGER :042C73D09F1720E0 \
80F2350FACF96D84BD5BE93CF8999892D9503A8BE63B3B124DD0176BA27669F \
4DA0C1ABCDAA7FB9E0C02BA48F4C4197E7EACFD1102F2AAEC0AE99074F34A74 \
E11E96D41028BED4CE6AD8842B3AD019FF83C4531002939DFD06C70F81612A1 \
A56141CF2DCCBC17E1AC5A6E69D7F116C8F95665D4A68D4125A

574:d=2 hl=3 l= 134 cons: SEQUENCE
577:d=3 hl=2 l= 1 prim: INTEGER :02
580:d=3 hl=3 l= 128 prim: INTEGER :069168DAD1074443 \
94821E09FF67AB3FEE83F5BD77215C3CA912F70AF386BAF44C03BBDDC7214AE \
CA64862D8354CC1BAEB8525DC4EF2A24F59D3CE3D12F724D5226AA26094112E \
B9A22D1490BEC5ABDEA3DB90546A1B7524790FE47E9F01007D452172AE9BD77 \
F32675767243CC125A6CC6562D0703D7F966CC3975D2E83F580



104 APPENDIX D. EL-GAMAL PARAMETERS AND KEYS



Bibliography

[1] B. Adamson, C. Bormann, M. Handley, and J. Macker. RFC3940:
Negative-acknowledgment (NACK)-oriented reliable multicast (NORM)
protocol. Request for comments, 2004. IETF Network working group.

[2] S. Cheshire. It’s the latency, stupid, 1996. http://rescomp.stanford.
edu/∼cheshire/rants/Latency.html.

[3] J. L. Cooke. Explanation of and improvements on /dev/random. http:
//jlcooke.ca/random/.

[4] J. L. Cooke. “[proposal/patch] fortuna prng in /dev/random”, 2004. Post-
ing to the Linux Kernel Mailing List. http://marc.theaimsgroup.com/
?l=linux-kernel.

[5] CryptGenRandom function description, 2006. Microsoft Developer’s Net-
work. http://msdn.microsoft.com.

[6] T. St. Denis. LibTomMath User Manual. T. St. Denis, 2005. Avail-
able from http://cvs.sourceforge.net/viewcvs.py/tcl/libtommath/
bn.pdf?rev=1.1.1.5.

[7] T. Speakman et. al. RFC3208: PGM reliable transport protocol specifica-
tion. Request for comments, 2004. IETF Network working group.

[8] N. Ferguson and B. Schneier. Practical Cryptography. Willey, 2003.

[9] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. Lecture notes in Computer Science,
263, 1987. In Proc. of the 12th CRYPTO Conference.

[10] F. Fiorina and S. Josefsson. Abstract Syntax Notation One (ASN.1) library
for the GNU system. Free Software Foundation, 2006. Available from
http://josefsson.org/gnutls/manual/libtasn1/libtasn1.pdf.

[11] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity
of verifiable secret sharing and secure multicast. In Proceedings of the
Annual ACM Symposium on Theory of Computing, STOC’01, 2001.

[12] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Lecture notes in Computer
Science, 1592, 1999.

105

http://rescomp.stanford.edu/~cheshire/rants/Latency.html
http://rescomp.stanford.edu/~cheshire/rants/Latency.html
http://jlcooke.ca/random/
http://jlcooke.ca/random/
http://marc.theaimsgroup.com/?l=linux-kernel
http://marc.theaimsgroup.com/?l=linux-kernel
http://msdn.microsoft.com
http://cvs.sourceforge.net/viewcvs.py/tcl/libtommath/bn.pdf?rev=1.1.1.5
http://cvs.sourceforge.net/viewcvs.py/tcl/libtommath/bn.pdf?rev=1.1.1.5
http://josefsson.org/gnutls/manual/libtasn1/libtasn1.pdf


106 BIBLIOGRAPHY

[13] T. Granlund. The GNU Multiple Precision Arithmetic Library. Free
Software Foundation, 2004. Available from http://www.swox.com/gmp/
gmp-man-4.1.4.pdf.

[14] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random
number generator, 2006. Available from http://eprint.iacr.org/2006/
086.

[15] M. Handley, C. Perkins, and E. Whelan. RFC2974: Session announcement
protocol. Request for comments, 2000. IETF Network working group.

[16] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Wes-
ley, 2001.

[17] J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: Notes on the design
and analysis of the yarrow cryptographic pseudorandom number generator,
1999. Available from http://www.schneier.com/paper-yarrow.ps.gz.

[18] D. E. Knuth and A. C. Yao. The complexity of nonuniform random num-
ber generation. In J. F. Traub, editor, Algorithms and complexity: New
directions and recent results, 1976.

[19] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
university press, 1987.

[20] A. K. Lenstra. Unbelievable security matching AES security using public
key systems.

[21] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal
of Cryptology, 14(4), 2001.

[22] C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based
schemes using a prime order subgroup. Lecture notes in Computer Science,
1294, 1997.

[23] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of
Cryptology, 15(3), 2002.

[24] N. Mavrogiannopoulos. Profile matcher API reference manual, 2006. In-
ternal document.

[25] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC Press, 1997.

[26] M. R. V. Murray. An implementation of the yarrow PRNG for
FreeBSD. In Proceedings of the BSDCon 2002, 2002. Available
from http://www.usenix.org/publications/library/proceedings/
bsdcon02/full papers/murray/murray.ps.

[27] P1363 Working Group of the Microprocessor Standards Committee. Draft
Standard for Specifications for Password based Public Key Cryptographic
Techniques. IEEE, 2006.

[28] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. Lecture notes in Computer Science, 576, 1992. Advances in
Cryptology - CRYPTO ’91.

[29] B. Schneier and N. Ferguson. Practical Cryptography. Wiley, 2003.

http://www.swox.com/gmp/gmp-man-4.1.4.pdf
http://www.swox.com/gmp/gmp-man-4.1.4.pdf
http://eprint.iacr.org/2006/086
http://eprint.iacr.org/2006/086
http://www.schneier.com/paper-yarrow.ps.gz
http://www.usenix.org/publications/library/proceedings/bsdcon02/full_papers/murray/murray.ps
http://www.usenix.org/publications/library/proceedings/bsdcon02/full_papers/murray/murray.ps


BIBLIOGRAPHY 107

[30] B. Schoenmakers. Cryptographic protocols. Technische Universiteit Eind-
hoven, 2004.

[31] B. Schoenmakers and P. Tuyls. Practical two-party computation based on
the conditional gate. Lecture notes in Computer Science, 3329, 2004.

[32] B. Schoenmakers and P. Tuyls. Private profile matching. In Proceedings of
the second Philips Symposium on Intelligent Algorithms, SOIA’04, 2004.

[33] V. Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2005.

[34] M. Stam. Speeding up Subgroup Cryptosystems. PhD thesis, Technische
Universiteit Eindhoven, 2003.

[35] W. R. Stevens. UNIX Network Programming, Volume 1, Second Edition:
Networking APIs: Sockets and XTI. Prentice Hall, 1998.

[36] International Telecommunication Union. Recommendation X.680-683: In-
formation Technology - Abstract Syntax Notation One (ASN.1). Interna-
tional Telecommunication Union, 1994.

[37] International Telecommunication Union. Recommendation X.509: Infor-
mation Technology - Open Systems Interconnection - The Directory: Au-
thentication Framework. International Telecommunication Union, 1997.

[38] P. C. van Oorschot and M. J. Wiener. On diffie-hellman key agreement
with short exponents. Lecture notes in Computer Science, 1070, 1996.

[39] J. Villavicenc. “no entropy and no output at /dev/random (quick ques-
tion)”, 2004. Posting to the Linux Kernel Mailing List. http://marc.
theaimsgroup.com/?l=linux-kernel.

[40] A. C. Yao. Protocols for secure computations. In IEEE Foundations of
computer science, 1982.

http://marc.theaimsgroup.com/?l=linux-kernel
http://marc.theaimsgroup.com/?l=linux-kernel

	Introduction
	Profile Matching
	Goals of this study
	Roadmap

	Building blocks
	Definitions and terminology
	El-Gamal cryptosystem
	Homomorphic El-Gamal cryptosystem
	Threshold El-Gamal cryptosystem
	Conditional gate
	Sigma proofs

	Approximate Matcher
	Approximate Matcher protocol
	Description
	Complexities
	Variants of the Approximate Matcher protocol

	Generic optimizations
	Single conditional gate
	Multiple conditional gates

	Approximate Matcher optimizations
	Parallel initiation
	Precomputations
	Combining outputs
	Combining optimizations

	Architecture of the software
	Requirements
	Threats
	Use cases
	Architectural views

	Implementation issues
	Modules and subsystems
	Communication protocol overview

	Results
	Deliverables
	Results
	Conclusions

	Summary
	Acronyms
	El-Gamal threshold key generation
	Data formats
	El-Gamal parameters and keys
	Bibliography

