
Slow things down
to make them
go faster

Jimmy Angelakos
Senior PostgreSQL Architect

FOSDEM 2022-02-06

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.2

We’ll be looking at PostgreSQL:

• High concurrency

• ACID & MVCC

• Locks

• High transaction rates

• Mitigation strategies

High
concurrency in
PostgreSQL

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.4

• RDBMS context: The ability to have transactions execute concurrently, not serially

• Practically: Serve multiple sessions/users “simultaneously”

– How to avoid conflicts? (dirty reads, lost updates, etc.)

– Made possible via concurrency control methods

• Postgres designed to be able to provide high concurrency safely

– Hundreds of activities at the same time

What is high concurrency?

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.5

• “Process per user” model

• Every client process connects to exactly one backend process

• Co-ordinated by postmaster supervisor process

• IPC via semaphores & shared memory

• Risk: CPU context switching

PostgreSQL is multi-process
CLIENT/SERVER IMPLEMENTATION

ACID & MVCC

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.7

• Isolation: how transaction integrity is visible by other sessions

• Anomalies: dirty/non-repeatable/phantom read, lost update, write/read-only transaction skew

• Lower isolation level: more sessions can access same data (at some risk)

• Higher isolation level: safer but increases resource usage & blocking

• Default PG isolation level: READ COMMITTED, highest isolation level: SERIALIZABLE

– Each query sees only transactions committed before it started

The I in ACID
Atomicity, Consistency, Isolation, Durability

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.8

• MVCC rather than locking for high concurrency and high performance

• Reading never waits

– Writing doesn’t block reading, reading doesn’t block writing

• Each write creates a new version of tuple

• Snapshot isolation: Timestamps & Transaction IDs (XIDs)

MVCC
Multi-Version Concurrency Control

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.9

• Obtained by each transaction

• Contents:

– Earliest transaction still active

– First as-yet-unassigned transaction

– List of active transactions

• Function: pg_current_snapshot()

Transaction Snapshot
Provided by Transaction Manager

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.10

• Checks for anti-dependency cycles and forbids them

– Error instead of hazardous operation (serialization anomaly)

• Performance

– Reduced concurrency, but:

– No blocking, no explicit locks needed (SIReadLocks, rw-conflicts)

– Just application-side retry after error

– Best performance choice for some application types

SSI – Serializable Snapshot Isolation
The performance of MVCC with the safety of Serializable

Locks in
PostgreSQL

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.12

• Table-level (e.g. SHARE) or row-level (e.g. FOR UPDATE)

• Conflict with other lock modes (e.g. ACCESS EXCLUSIVE with ROW EXCLUSIVE)

• Block read/write access totally leading to waits

• Disastrous for performance

– Unless your application is exquisitely crafted

– Hint: it isn’t

Explicit locking
a.k.a. heavyweight locks – not what we’re talking about here

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.13

• Protect data in shared memory

– Remember? Multi-process

– Ensure consistent reads/writes

– Shared, Exclusive modes

• Enable fast MVCC

– Generally held briefly

– Sometimes protect I/O

Lightweight Locks (LWLocks) – i
a.k.a. “latches” in other DBs

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.14

• Possible problem: a lock becomes heavily contended

– Lots of lockers slow each other down

– Throughput is reduced

– No queuing, more or less random

– May indicate existence of hot data

• Monitoring: pg_stat_activity (look for wait_event_type: LWLock)

Lightweight Locks (LWLocks) – ii
Under high concurrency

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.15

• Extremely high max_connections settings allow this

• Many idle open connections

– Means: many snapshots

– Can halve your performance in TPS

– Even with simple R/O workload

• Improvement in PG14: snapshot caching (transaction completion counter)

Snapshot contention
Waiting for connections that are idle!

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.16

• 100 connections

– tps = 1560.134, latency average = 52.162 ms

• 300 connections

– tps = 1307.431, latency average = 190.652 ms

• 1000 connections

– tps = 1184.786, latency average = 668.470 ms

Many connections...
PG13 Tests on AWS r5.8xlarge with pgbench -j10 -C -c<clients> -T120 -b simple-update pgbenchdb

High
transaction
rates

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.18

• Postgres assigns an identifier to each transaction

– Unsigned 32-bit integer (4.2B values)

• Circular space, with a visibility horizon

– In transaction 10000: 9999 is the past (visible), 10001 the future (invisible)

– 2.1B transactions into the past, 2.1B transactions in the future

• Basis for MVCC mechanism – just write into heap, each tuple has xmin, xmax

• Amazing write/rollback performance BUT requires maintenance operations

Transaction ID
a.k.a. txid

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.19

• Very heavy OLTP workloads can go through 2.1B transactions in a short time

• XID wraparound: you try to read a very old tuple that is > 2.1B XIDs in the past

– For you, that’s the future! (invisible)

• Freezing: Change tuple xmin to “frozen” txid 2 which is known to always be in the past

• Need to make sure FREEZE happens before XID wraparound

• Bloat

• Aborted transaction IDs remain

High transaction burn rate
Just because you can, doesn’t mean you should

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.20

• Removes dead tuples, freezes tuples

– Among other things

• Has overhead

– Scans tables & indices

– Needs, obtains, and waits for locks

• Has limited capacity by default

(Auto)VACUUM
The MVCC maintenance operation

Mitigation
strategies

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.22

• Avoid explicit locking!

• Use SSI (SERIALIZABLE isolation level)

• Make application tolerant

– Allow it to fail and retry

Lock contention
Waiting for explicit locks

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.23

LWLock contention
Too many connections to server

● Contention often caused by too much concurrency

● Insert a connection pooler between application and DB

● Allow fewer connections into the DB

● Make the rest queue for their turn

● Sounds counter-intuitive!

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.24

• “Throttle” application by reducing no. of connections reaching server

– Leave max_client_conn to what app wants, only allow max_db_connections

– Introduce latency on the application side, to save your server performance

– Doesn’t necessarily slow anything down – queries may execute faster!

• transaction pool mode: PgBouncer reuses connection for user when transaction ends

• statement pool mode: PgBouncer reuses connection for next statement

– No transaction control, for autocommit-type workloads

Connection pooling
PGBouncer is a pretty good solution

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.25

• Misbehaving application with job parallelization, leaving jobs’ connections open

• max_connections set to 5000, 2500+ open connections observed

• After PgBouncer in Transaction mode:

– 30 connections used in Postgres (!)

– Queries executed much faster

• Other solutions: Application side, Pgpool-II, Odyssey

PgBouncer effect
Real world use case

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.26

• Adapt your application: Read Only and Read/Write connections

• Send write operations to primary server

• Send read operations to standby servers

– Horizontal read scalability

• Set up R/O and R/W PgBouncer endpoints

• Use logical replication if partial dataset required

Split your workload
With streaming/logical replication

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.27

• Can batching help?

– Batch size 1000 will have 1/1000th the burn rate

• Increase effectiveness of autovacuum

– More efficient FREEZE

XID wraparound

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.28

• People are concerned about overhead

– Alternative is worse! You can’t avoid VACUUM in Postgres (yet).

– You can outrun it (and then you’ll need VACUUM FULL)

• Increase potency via:

– maintenance_work_mem (1GB is good)

– autovacuum_max_workers

– autovacuum_vacuum_cost_delay / autovacuum_vacuum_cost_limit

Autovacuum
Make it work harder to avoid problems

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.29

Monitoring tools
Detect contention, wait events

● psql

● UNIX tools: ps, top, iostat, vmstat

● pgAdmin

● pg_view, pgstats, pgmetrics, …
● check_postgres, check_pgactivity

● Proprietary

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.30

• OLTP

– R/W, shorter queries, high contention, sustained rate, fewer idle connections (?)

• Web server

– R/O bias, shorter queries, less contention, more idle connections (?)

• Spark/batch/analytics

– R/W, longer queries, high contention, more idle connections (?)

Disclaimer
Every workload is different!

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.31

• Know your workload & application behaviour!Know your workload & application behaviour!

• Monitor for signs of high contentionMonitor for signs of high contention

• Not overwhelming Postgres is the keyNot overwhelming Postgres is the key

• Split your workloadSplit your workload

• Use connection pooling & autovacuumUse connection pooling & autovacuum

To conclude...To conclude...

© Copyright EnterpriseDB Corporation, 2022. All rights reserved.32

Find me on Twitter: @vyrussFind me on Twitter: @vyruss

Thank you!Thank you!

