
Practical
Partitioning in
Production with
Postgres
Jimmy Angelakos
Senior PostgreSQL Architect

Postgres Vision 2021-06-23

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.2

We’ll be looking at:

• Intro to Partitioning in PostgreSQL

• Why?

• How?

• Practical Example

Introduction to
Partitioning in
PostgreSQL

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.4

• RDBMS context: division of a table into distinct independent tables

• Horizontal partitioning (by row) – different rows in different tables

• Why?

– Easier to manage

– Performance

What is partitioning?

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.5

• Has had partitioning for quite some time now PG 8.1 (2005)…

– Inheritance-based

– Why haven’t I heard of this before?

– It’s not great tbh...

• Declarative Partitioning: PG 10 (2017)

– Massive improvement

Partitioning in PostgreSQL
HISTORY

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.6

CREATE TABLE cust (id INT, signup DATE)
PARTITION BY RANGE (signup);

CREATE TABLE cust_2020
PARTITION OF cust FOR VALUES FROM
('2020-01-01') TO ('2021-01-01');

• Partitions may be partitioned
themselves (sub-partitioning)

Declarative Partitioning
(PG 10+)

Specification of: By declaring a table (DDL):

• Partitioning method

• Partition key

– Column(s) or expression(s)

– Value determines data routing

• Partition boundaries

Why?

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.8

• Database size: unlimited ✅

• Tables per database: 1.4 billion ✅

• Table size: 32 TB 😐

– Default block size: 8192 bytes

• Rows per table: depends

– As many as can fit onto 4.2 billion blocks 😐

PostgreSQL limits
(Hard limits, hard to reach)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.9

• Disk size limitations

– You can put partitions on different tablespaces

• Performance

– Partition pruning

– Table scans

– Index scans

– Hidden pitfalls of very large tables*

What partitioning can help with (i)
(Very large tables)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.10

• Maintenance

– Deletions (some filesystems are bad at deleting large numbers of files)🤭

– DROP TABLE cust_2020;

– ALTER TABLE cust DETACH PARTITION cust_2020;

• VACUUM

– Bloat

– Freezing → xid wraparound

What partitioning can help with (ii)
(Very large tables)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.11

• Magic bullet

– No substitute for rational database design

• Sharding

– Not about putting part of the data on different nodes

• Performance tuning

– Unless you have one of the mentioned issues

What partitioning is not

How?

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.13

• Get your calculator out

– Data ingestion rate (both rows and size in bytes)

– Projected increases (e.g. 25 locations projected to be 200 by end of year)

– Data retention requirements

• Will inform choice of partitioning method and key

• For instance: 1440 measurements/day from each of 1000 sensors – extrapolate per year

• Keep checking if this is valid and be prepared to revise

Dimensioning
Plan ahead!

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.14

• Range: For key column(s) e.g. ranges of dates, identifiers, etc.

– Lower end: inclusive, upper end: exclusive

• List: Explicit key values stated for each partition

• Hash (PG 11+): If you have a column with values close to unique

– Define Modulus (& remainder) for number of almost-evenly-sized partitions

Partitioning method
Dimensioning usually makes this clearer

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.15

• Analysis

– Determine main keys used for retrieval from queries

– Proper key selection enables partition pruning

– Can use multiple columns for higher granularity (more partitions)

• Desirable

– High enough cardinality (range of values) for the number of partitions needed

– A column that doesn’t change often, to avoid moving rows among partitions

Partition Key selection
Choose wisely - know your data!

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.16

• Simply put, partitions are partitioned tables themselves. Plan ahead!

• CREATE TABLE transactions (, location_code … TEXT, tstamp TIMESTAMPTZ)
PARTITION BY RANGE (tstamp);

• CREATE TABLE transactions_2021_06
PARTITION OF transactions FOR VALUES FROM ('2021-06-01') TO ('2021-07-01')
PARTITION BY HASH (location_code);

• CREATE TABLE transactions_2021_06_p1
PARTITION OF transactions_2021_06 FOR VALUES WITH (MODULUS 4, REMAINDER 0);

Sub-partitioning

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.17

Partitioning by multiple columns

• CREATE TABLE transactions (, location_code … TEXT, tstamp TIMESTAMPTZ)
PARTITION BY RANGE (tstamp, location_code);

• CREATE TABLE transactions_2021_06_a PARTITION OF transactions
FOR VALUES FROM ('2021-06-01', 'AAA') TO ('2021-07-01', 'AZZ');

• CREATE TABLE transactions_2021_06_b PARTITION OF transactions
FOR VALUES FROM ('2021-06-01', 'BAA') TO ('2021-07-01', 'BZZ');
ERROR: partition "transactions_2021_06_b" would overlap partition
"transactions_2021_06_a"

• Because tstamp '2021-06-01' can only go in the first partition!

Be careful!

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.18

• Automatic creation of partitions

– Create in advance

– Use a cronjob

• Imperative merging/splitting of partitions

– Move rows manually

• Sharding to different nodes

– You may have to configure FDW manually

What Postgres does not do
 core

Practical
Example

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.20

• Is your table too large to handle?

• Can partitioning help?

• What if it’s in constant use?

Partitioning a live production system

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.21

• OLTP workload, transactions keep flowing in

– Table keeps increasing in size

• VACUUM never ends

– Has been running for a full month already…

• Queries are getting slower

– Not just because of sheer number of rows...

The situation
Huge 20 TB table

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.22

• Postgres has 1GB segment size

– Can only be changed at
compilation time

– 20 TB table = 20000 segments
(files on disk)

• Why is this a problem?

– md.c →

* Hidden performance pitfall (i)
For VERY large tables

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.23

● This loops 20000 times every time you
want to access a table page

– Linked list of segments

● Code from PG 9.6

● It has been heavily optimised recently
(caching, etc).

● Still needs to run a lot of times

* Hidden performance pitfall (ii)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.24

• Need to partition the huge table

– Dimensioning

– Partition method

– Partition key

• Make sure we’re on the latest version (PG 13)

– Get latest features & performance enhancements

So what do we do?
Next steps

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.25

• Dimensioning

– One partition per month will be about 30GB of data, so acceptable size

• Method, Key

– Candidate key is transaction date, which we can partition by range

– Check that there are no data errors (e.g. dates in the future when they shouldn’t be)

• Partition sizes don’t have to be equal

– We can partition older, less often accessed data by year

What is our table like?
It holds daily transaction totals for each point of sales

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.26

• Lock the table totally (ACCESS EXCLUSIVE) or prevent writes

– People will start yelling, and they will be right

• Cause excessive load on the system (e.g. I/O) or cause excessive disk space usage

– Can’t copy whole 20 TB table into empty partitioned table

– See above about yelling

• Present an inconsistent or incomplete view of the data

Problems
What things you cannot do in production

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.27

• Rename the huge table and its indices

• Create an empty partitioned table with the old huge table’s name

• Create the required indices on the new partitioned table

– They will be created automatically for each new partition

• Create first new partition for new incoming data

• Attach the old table as a partition of the new table so it can be used normally*

• Move data out of the old table incrementally at our own pace

The plan
Take it step by step

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.28

-- Do this all in one transaction
BEGIN;

ALTER TABLE dailytotals RENAME TO dailytotals_legacy;

ALTER INDEX dailytotals_batchid RENAME TO dailytotals_legacy_batchid;

ALTER INDEX …
 …

Rename the huge table and its indices

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.29

CREATE TABLE dailytotals (
totalid BIGINT NOT NULL DEFAULT nextval('dailytotals_totalid_seq')

 , totaldate DATE NOT NULL
 , totalsum BIGINT

…
 , batchid BIGINT NOT NULL
)
PARTITION BY RANGE (totaldate);

CREATE INDEX dailytotals_batchid ON dailytotals (batchid);
…

Create empty partitioned table & indices

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.30

CREATE TABLE dailytotals_202106
PARTITION OF dailytotals
FOR VALUES FROM ('2021-06-01') TO ('2021-07-01');

Create partition for new incoming data

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.31

DO $$
DECLARE earliest DATE;
DECLARE latest DATE;
BEGIN

-- Set boundaries
SELECT min(totaldate) INTO earliest FROM dailytotals_legacy;
latest := '2021-06-01'::DATE;

Attach old table as a partition (i)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.32

-- HACK HACK HACK (only because we know and trust our data)
ALTER TABLE dailytotals_legacy
ADD CONSTRAINT dailytotals_legacy_totaldate
CHECK (totaldate >= earliest AND totaldate < latest)
NOT VALID;

-- You should not touch pg_catalog directly 😕
UPDATE pg_constraint
SET convalidated = true
WHERE conname = 'dailytotals_legacy_totaldate';

Attach old table as a partition (ii)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.33

ALTER TABLE dailytotals
ATTACH PARTITION dailytotals_legacy
FOR VALUES FROM (earliest) TO (latest);

END;
$$ LANGUAGE PLPGSQL;
COMMIT;

Attach old table as a partition (iii)

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.34

• For instance, during quiet hours for the system, in scheduled batch jobs, etc.

WITH rows AS (
DELETE FROM dailytotals_legacy d
WHERE (totaldate >= '2020-01-01' AND totaldate < '2021-01-01')
RETURNING d.*)

INSERT INTO dailytotals SELECT * FROM rows;

• In the same transaction: DETACH the old table, perform the move, reATTACH with changed
boundaries. Rinse and repeat!

• Make sure the target partition exists!

Move data from old table at our own pace

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.35

• PG11: DEFAULT partition, UPDATE on partition key, HASH method, PKs, FKs, Indexes, Triggers

• PG12: Performance (pruning, COPY), FK references for partitioned tables, ordered scans

• PG13: Logical replication for partitioned tables, improved performance (JOINs, pruning)

• (Soon) PG14: REINDEX CONCURRENTLY, DETACH CONCURRENTLY, faster UPDATE/DELETE

Partitioning improvements
Make sure you’re on the latest release so you have them!

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.36

• Know your data!

• Upgrade – be on the latest release!

• Partition before you get in deep water!

• Find me on Twitter: @vyruss

To conclude...

